論文の概要: Streamlining the review process: AI-generated annotations in research manuscripts
- arxiv url: http://arxiv.org/abs/2412.00281v1
- Date: Fri, 29 Nov 2024 23:26:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:46:43.010522
- Title: Streamlining the review process: AI-generated annotations in research manuscripts
- Title(参考訳): レビュープロセスの合理化:研究写本におけるAI生成アノテーション
- Authors: Oscar Díaz, Xabier Garmendia, Juanan Pereira,
- Abstract要約: 本研究では,Large Language Models (LLM) をピアレビュープロセスに統合し,効率を向上する可能性について検討する。
我々は、AIと人間のコラボレーションの潜在的な領域として、写本の注釈、特に抜粋ハイライトに焦点を当てている。
本稿では,GPT-4を利用した原稿レビュープラットフォームAnnotateGPTを紹介する。
- 参考スコア(独自算出の注目度): 0.5735035463793009
- License:
- Abstract: The increasing volume of research paper submissions poses a significant challenge to the traditional academic peer-review system, leading to an overwhelming workload for reviewers. This study explores the potential of integrating Large Language Models (LLMs) into the peer-review process to enhance efficiency without compromising effectiveness. We focus on manuscript annotations, particularly excerpt highlights, as a potential area for AI-human collaboration. While LLMs excel in certain tasks like aspect coverage and informativeness, they often lack high-level analysis and critical thinking, making them unsuitable for replacing human reviewers entirely. Our approach involves using LLMs to assist with specific aspects of the review process. This paper introduces AnnotateGPT, a platform that utilizes GPT-4 for manuscript review, aiming to improve reviewers' comprehension and focus. We evaluate AnnotateGPT using a Technology Acceptance Model (TAM) questionnaire with nine participants and generalize the findings. Our work highlights annotation as a viable middle ground for AI-human collaboration in academic review, offering insights into integrating LLMs into the review process and tuning traditional annotation tools for LLM incorporation.
- Abstract(参考訳): 研究論文の提出量の増加は、従来の学術的査読システムに重大な課題をもたらし、レビュアーにとって圧倒的な作業負荷をもたらしている。
本研究では,Large Language Models (LLM) をピアレビュープロセスに統合し,効率を向上する可能性について検討する。
我々は、AIと人間のコラボレーションの潜在的な領域として、写本の注釈、特に抜粋ハイライトに焦点を当てている。
LLMはアスペクトカバレッジや情報性といった特定のタスクに優れていますが、高レベルの分析や批判的な思考が欠如しています。
私たちのアプローチでは、レビュープロセスの特定の側面を支援するためにLLMを使用します。
本稿では,GPT-4を利用した原稿レビュープラットフォームAnnotateGPTを紹介する。
TAM (Technology Acceptance Model) を用いた AnnotateGPT の評価を行った。
我々の研究は、学術的なレビューにおいて、AIと人間のコラボレーションのための有効な中核としてアノテーションを強調し、LLMをレビュープロセスに統合するための洞察を提供し、LLMの法人化のために従来のアノテーションツールをチューニングする。
関連論文リスト
- Generative Adversarial Reviews: When LLMs Become the Critic [1.2430809884830318]
本稿では,LLMを利用したエージェントを利用して,忠実なピアレビュアーをシミュレートするジェネレーティブエージェントレビュアー(GAR)を紹介する。
このアプローチの中心は、グラフベースの原稿表現であり、コンテンツを凝縮し、情報を論理的に整理する。
本実験は,GARが人間レビュアーに対して,詳細なフィードバックと論文結果の予測を行う上で,相容れない性能を示すことを示した。
論文 参考訳(メタデータ) (2024-12-09T06:58:17Z) - Are We There Yet? Revealing the Risks of Utilizing Large Language Models in Scholarly Peer Review [66.73247554182376]
大規模言語モデル(LLM)がピアレビューに統合された。
未確認のLLMの採用は、ピアレビューシステムの完全性に重大なリスクをもたらす。
5%のレビューを操作すれば、論文の12%が上位30%のランキングでその地位を失う可能性がある。
論文 参考訳(メタデータ) (2024-12-02T16:55:03Z) - AI-Driven Review Systems: Evaluating LLMs in Scalable and Bias-Aware Academic Reviews [18.50142644126276]
我々は,人選好のアリーナを用いて,人選好と自動レビューのアライメントを評価する。
我々は、LLMを微調整して人間の好みを予測し、LLM同士の真っ向からの戦いにおいて、どのレビューが好まれるかを予測する。
我々は、公開可能なarXivおよびオープンアクセスのNatureジャーナルのレビューをオンラインで公開し、著者が研究論文をレビューし、改訂し、品質を改善するのに役立つ無料サービスを提供しています。
論文 参考訳(メタデータ) (2024-08-19T19:10:38Z) - LLMs Assist NLP Researchers: Critique Paper (Meta-)Reviewing [106.45895712717612]
大規模言語モデル(LLM)は、様々な生成タスクにおいて顕著な汎用性を示している。
本研究は,NLP研究者を支援するLLMの話題に焦点を当てる。
私たちの知る限りでは、このような包括的な分析を提供するのはこれが初めてです。
論文 参考訳(メタデータ) (2024-06-24T01:30:22Z) - Peer Review as A Multi-Turn and Long-Context Dialogue with Role-Based Interactions [62.0123588983514]
大規模言語モデル(LLM)は様々な分野にまたがる幅広い応用を実証してきた。
我々は、ピアレビュープロセスを多ターン長文対話として再構築し、著者、レビュアー、意思決定者に対して異なる役割を担っている。
複数の情報源から収集された92,017件のレビューを含む26,841件の論文を含む包括的データセットを構築した。
論文 参考訳(メタデータ) (2024-06-09T08:24:17Z) - What Can Natural Language Processing Do for Peer Review? [173.8912784451817]
現代の科学ではピアレビューが広く使われているが、それは難しく、時間がかかり、エラーを起こしやすい。
ピアレビューに関わるアーティファクトは大部分がテキストベースであるため、自然言語処理はレビューを改善する大きな可能性を秘めている。
筆者らは、原稿提出からカメラ対応リビジョンまでの各工程について詳述し、NLP支援の課題と機会について論じる。
論文 参考訳(メタデータ) (2024-05-10T16:06:43Z) - A Systematic Literature Review on Large Language Models for Automated Program Repair [15.239506022284292]
研究者が現在の成果、課題、潜在的な機会を理解することは困難である。
この研究は、2020年から2024年までのAPRにおけるLarge Language Modelsの応用を要約する最初の体系的な文献レビューを提供する。
論文 参考訳(メタデータ) (2024-05-02T16:55:03Z) - PRE: A Peer Review Based Large Language Model Evaluator [14.585292530642603]
既存のパラダイムは、LLMの性能を評価するために、人間アノテーションまたはモデルベースの評価器のいずれかに依存している。
ピアレビュープロセスを通じてLLMを自動的に評価できる新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-28T12:33:14Z) - Automatically Correcting Large Language Models: Surveying the landscape
of diverse self-correction strategies [104.32199881187607]
大規模言語モデル(LLM)は、幅広いNLPタスクで顕著な性能を示した。
これらの欠陥を正すための有望なアプローチは自己補正であり、LLM自体が自身の出力で問題を修正するために誘導される。
本稿では,この新技術について概観する。
論文 参考訳(メタデータ) (2023-08-06T18:38:52Z) - Investigating Fairness Disparities in Peer Review: A Language Model
Enhanced Approach [77.61131357420201]
我々は、大規模言語モデル(LM)の助けを借りて、ピアレビューにおける公平性格差の徹底した厳密な研究を行う。
我々は、2017年から現在までのICLR(International Conference on Learning Representations)カンファレンスで、包括的なリレーショナルデータベースを収集、組み立て、維持しています。
我々は、著作者性別、地理、著作者、機関的名声など、興味のある複数の保護属性に対する公平性の違いを仮定し、研究する。
論文 参考訳(メタデータ) (2022-11-07T16:19:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。