論文の概要: Vehicle-group-based Crash Risk Prediction and Interpretation on Highways
- arxiv url: http://arxiv.org/abs/2402.12415v2
- Date: Mon, 27 Jan 2025 01:51:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-28 21:57:03.181076
- Title: Vehicle-group-based Crash Risk Prediction and Interpretation on Highways
- Title(参考訳): 自動車グループによる高速道路事故リスク予測と解釈
- Authors: Tianheng Zhu, Ling Wang, Yiheng Feng, Wanjing Ma, Mohamed Abdel-Aty,
- Abstract要約: 本研究では,新しい車両群に基づくリスク分析手法について検討し,VGの特徴を考慮したリスク進化機構について検討する。
衝突型車両群をVGに分類する手法を提案し, 付近の車両の異常行動に対する応答を評価した。
次に、ロジスティック回帰とグラフニューラルネットワーク(GNN)を使用して、集約および非集約されたVG情報を使用して、VGリスクを予測する。
- 参考スコア(独自算出の注目度): 8.703173025279431
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Previous studies in predicting crash risks primarily associated the number or likelihood of crashes on a road segment with traffic parameters or geometric characteristics, usually neglecting the impact of vehicles' continuous movement and interactions with nearby vehicles. Recent technology advances, such as Connected and Automated Vehicles (CAVs) and Unmanned Aerial Vehicles (UAVs) are able to collect high-resolution trajectory data, which enables trajectory-based risk analysis. This study investigates a new vehicle group (VG) based risk analysis method and explores risk evolution mechanisms considering VG features. An impact-based vehicle grouping method is proposed to cluster vehicles into VGs by evaluating their responses to the erratic behaviors of nearby vehicles. The risk of a VG is aggregated based on the risk between each vehicle pair in the VG, measured by inverse Time-to-Collision (iTTC). A Logistic Regression and a Graph Neural Network (GNN) are then employed to predict VG risks using aggregated and disaggregated VG information. Both methods achieve excellent performance with AUC values exceeding 0.93. For the GNN model, GNNExplainer with feature perturbation is applied to identify critical individual vehicle features and their directional impact on VG risks. Overall, this research contributes a new perspective for identifying, predicting, and interpreting traffic risks.
- Abstract(参考訳): 衝突リスクの予測に関する以前の研究は、主に交通パラメータや幾何学的特徴を持つ道路セグメントの衝突の回数や可能性に関係しており、通常は車両の連続的な動きや近くの車両との相互作用の影響を無視している。
コネクテッド・アンド・オートマチック・ビークル(CAV)や無人航空機(UAV)といった最近の技術進歩は、高解像度の軌道データを収集し、軌道に基づくリスク分析を可能にする。
本研究では,新しい車両群(VG)に基づくリスク分析手法について検討し,VGの特徴を考慮したリスク進化機構について検討する。
衝突型車両群をVGに分類する手法を提案し, 付近の車両の異常行動に対する応答を評価した。
VGのリスクは、逆時間対衝突(iTTC)によって測定されたVG内の各車両ペア間のリスクに基づいて集計される。
次に、ロジスティック回帰とグラフニューラルネットワーク(GNN)を使用して、集約および非集約されたVG情報を使用して、VGリスクを予測する。
どちらの手法もAUC値0.93を超える優れた性能を達成している。
GNNモデルでは、特徴摂動を伴うGNNExplainerを適用して、重要な個々の車両の特徴とVGリスクに対する方向性の影響を特定する。
全体として、この研究は交通リスクを特定し、予測し、解釈するための新しい視点に寄与する。
関連論文リスト
- NsBM-GAT: A Non-stationary Block Maximum and Graph Attention Framework for General Traffic Crash Risk Prediction [11.444259609536164]
既存の衝突リスク予測モデルは、研究者が危険とみなす仮説上のシナリオに依存している。
ダッシュカムビデオは、個々の車のクレーシュ前動作を撮影するが、周囲の車両の動きに関する重要な情報を欠いていることが多い。
本研究では,車両とその周辺車両間の対話的挙動を捉えるために,新しい非定常極値理論(EVT)を提案する。
論文 参考訳(メタデータ) (2025-03-06T02:12:40Z) - Traffic and Safety Rule Compliance of Humans in Diverse Driving Situations [48.924085579865334]
安全な運転プラクティスを再現する自律システムを開発するためには、人間のデータを分析することが不可欠だ。
本稿では,複数の軌道予測データセットにおける交通・安全規則の適合性の比較評価を行う。
論文 参考訳(メタデータ) (2024-11-04T09:21:00Z) - Automated Vehicles at Unsignalized Intersections: Safety and Efficiency Implications of Mixed-Human-Automated Traffic [6.9492069439607995]
自動車両(AV)の交通システムへの統合は、道路の安全性と効率を高める前例のない機会である。
本研究では,無人交差点におけるAVと人間駆動車(HV)の行動差と適応性を調べることにより,ギャップを埋めることを目的とする。
AVはより大きな安全マージンを維持しているが、その保守的な行動は、人間のドライバーにとって予期せぬ状況を引き起こす可能性がある。
論文 参考訳(メタデータ) (2024-10-16T13:19:32Z) - Learning Traffic Crashes as Language: Datasets, Benchmarks, and What-if Causal Analyses [76.59021017301127]
我々は,CrashEventという大規模トラフィッククラッシュ言語データセットを提案し,実世界のクラッシュレポート19,340を要約した。
さらに,クラッシュイベントの特徴学習を,新たなテキスト推論問題として定式化し,さらに様々な大規模言語モデル(LLM)を微調整して,詳細な事故結果を予測する。
実験の結果, LLMに基づくアプローチは事故の重大度を予測できるだけでなく, 事故の種類を分類し, 損害を予測できることがわかった。
論文 参考訳(メタデータ) (2024-06-16T03:10:16Z) - Context-Aware Quantitative Risk Assessment Machine Learning Model for
Drivers Distraction [0.0]
MDDRA(Multi-class Driver Distraction Risk Assessment)モデルは、旅行中の車両、運転者、環境データを考慮したモデルである。
MDDRAは、危険行列上のドライバーを安全、不注意、危険と分類する。
我々は、重度レベルに応じて運転者の気晴らしを分類し、予測するために機械学習技術を適用した。
論文 参考訳(メタデータ) (2024-02-20T23:20:36Z) - Risk-anticipatory autonomous driving strategies considering vehicles' weights, based on hierarchical deep reinforcement learning [12.014977175887767]
本研究では,周囲の車両の重量を考慮し,リスク予測に基づく自律運転戦略を開発する。
リスクフィールド理論に基づいて、周囲の車両重量を統合するリスクインジケータを提案し、自律運転決定に組み込んだ。
衝突時の潜在的な衝突エネルギーを示す指標を新たに提案し, AV駆動方式の性能評価を行った。
論文 参考訳(メタデータ) (2023-12-27T06:03:34Z) - Leveraging Driver Field-of-View for Multimodal Ego-Trajectory Prediction [69.29802752614677]
RouteFormerは、GPSデータ、環境コンテキスト、運転者の視野を組み合わせた新しいエゴ軌道予測ネットワークである。
データ不足に対処し、多様性を高めるために、同期運転場と視線データに富んだ都市運転シナリオのデータセットであるGEMを導入する。
論文 参考訳(メタデータ) (2023-12-13T23:06:30Z) - RACER: Rational Artificial Intelligence Car-following-model Enhanced by
Reality [51.244807332133696]
本稿では,アダプティブ・クルーズ・コントロール(ACC)運転行動を予測する,最先端の深層学習車追従モデルであるRACERを紹介する。
従来のモデルとは異なり、RACERは実走行の重要な要素であるRDC(Rational Driving Constraints)を効果的に統合している。
RACERはアクセラレーション、ベロシティ、スペーシングといった主要なメトリクスを網羅し、ゼロ違反を登録する。
論文 参考訳(メタデータ) (2023-12-12T06:21:30Z) - A Counterfactual Safety Margin Perspective on the Scoring of Autonomous
Vehicles' Riskiness [52.27309191283943]
本稿では,異なるAVの行動のリスクを評価するためのデータ駆動型フレームワークを提案する。
本稿では,衝突を引き起こす可能性のある名目行動から最小限の偏差を示す,対実的安全マージンの概念を提案する。
論文 参考訳(メタデータ) (2023-08-02T09:48:08Z) - RCP-RF: A Comprehensive Road-car-pedestrian Risk Management Framework
based on Driving Risk Potential Field [1.625213292350038]
本研究では,コネクテッド・アンド・オートマチック・ビークル(CAV)環境下での電位場理論に基づく総合運転リスク管理フレームワークRCP-RFを提案する。
既存のアルゴリズムと異なり,エゴ車と障害物車と歩行者係数の移動傾向は,提案手法において正当に考慮されている。
実世界のデータセットNGSIMおよび実AVプラットフォーム上での最先端手法に対する提案手法の優位性を検証する実証的研究を行った。
論文 参考訳(メタデータ) (2023-05-04T01:54:37Z) - Probabilistic Uncertainty-Aware Risk Spot Detector for Naturalistic
Driving [1.8047694351309207]
リスクアセスメントは自動運転車の開発と検証の中心的な要素である。
Time Headway (TH) と Time-To-Contact (TTC) は一般的にリスクメトリクスとして使われ、発生確率と質的な関係を持つ。
本稿では,生存分析に基づく確率論的状況リスクモデルを提案し,それを自然に知覚・時間的・行動的不確実性に組み込むよう拡張する。
論文 参考訳(メタデータ) (2023-03-13T15:22:51Z) - AdvDO: Realistic Adversarial Attacks for Trajectory Prediction [87.96767885419423]
軌道予測は、自動運転車が正しく安全な運転行動を計画するために不可欠である。
我々は,現実的な対向軌道を生成するために,最適化に基づく対向攻撃フレームワークを考案する。
私たちの攻撃は、AVが道路を走り去るか、シミュレーション中に他の車両に衝突する可能性がある。
論文 参考訳(メタデータ) (2022-09-19T03:34:59Z) - Analyzing vehicle pedestrian interactions combining data cube structure
and predictive collision risk estimation model [5.73658856166614]
本研究では,フィールドと集中型プロセスを組み合わせた歩行者安全システムについて紹介する。
本システムは,現場における今後のリスクを直ちに警告し,実際の衝突のない道路の安全レベルを評価することにより,危険頻繁なエリアの安全性を向上させることができる。
論文 参考訳(メタデータ) (2021-07-26T23:00:56Z) - A model for traffic incident prediction using emergency braking data [77.34726150561087]
道路交通事故予測におけるデータ不足の根本的な課題を、事故の代わりに緊急ブレーキイベントをトレーニングすることで解決します。
メルセデス・ベンツ車両の緊急ブレーキデータに基づくドイツにおける交通事故予測モデルを実装したプロトタイプを提案する。
論文 参考訳(メタデータ) (2021-02-12T18:17:12Z) - Cautious Adaptation For Reinforcement Learning in Safety-Critical
Settings [129.80279257258098]
都市運転のような現実の安全クリティカルな目標設定における強化学習(RL)は危険である。
非安全クリティカルな「ソース」環境でエージェントが最初に訓練する「安全クリティカル適応」タスクセットを提案する。
多様な環境における事前経験がリスクを見積もるためにエージェントに装備するという直感に基づくソリューションアプローチであるCARLを提案する。
論文 参考訳(メタデータ) (2020-08-15T01:40:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。