論文の概要: Generative AI Security: Challenges and Countermeasures
- arxiv url: http://arxiv.org/abs/2402.12617v2
- Date: Wed, 23 Oct 2024 06:28:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-24 13:54:16.749638
- Title: Generative AI Security: Challenges and Countermeasures
- Title(参考訳): ジェネレーティブAIセキュリティ - 課題と対策
- Authors: Banghua Zhu, Norman Mu, Jiantao Jiao, David Wagner,
- Abstract要約: 生成的AIのフットプリントは、多くの業界で拡大しており、興奮と監視の増大につながっている。
本稿では、ジェネレーティブAIがもたらすユニークなセキュリティ課題について論じ、これらのリスクを管理するための潜在的研究の方向性を概説する。
- 参考スコア(独自算出の注目度): 22.70061310964906
- License:
- Abstract: Generative AI's expanding footprint across numerous industries has led to both excitement and increased scrutiny. This paper delves into the unique security challenges posed by Generative AI, and outlines potential research directions for managing these risks.
- Abstract(参考訳): 生成的AIのフットプリントは、多くの業界で拡大しており、興奮と監視の増大につながっている。
本稿では、ジェネレーティブAIがもたらすユニークなセキュリティ課題について論じ、これらのリスクを管理するための潜在的研究の方向性を概説する。
関連論文リスト
- Multi-Agent Risks from Advanced AI [90.74347101431474]
先進的なAIのマルチエージェントシステムは、新規で未発見のリスクを生じさせる。
エージェントのインセンティブに基づく3つの重要な障害モードと7つの重要なリスク要因を同定する。
各リスクのいくつかの重要な事例と、それらを緩和するための有望な方向性を強調します。
論文 参考訳(メタデータ) (2025-02-19T23:03:21Z) - AI Safety for Everyone [3.440579243843689]
AIの安全性に関する最近の議論と研究は、AIの安全性と高度なAIシステムからの現実的リスクとの深いつながりを強調している。
このフレーミングは、AIの安全性にコミットしているが、異なる角度から分野にアプローチする研究者や実践者を排除する可能性がある。
私たちは、現在のAIシステムに対する即時的で実践的な懸念に対処する、数多くの具体的な安全作業を見つけました。
論文 参考訳(メタデータ) (2025-02-13T13:04:59Z) - Safety is Essential for Responsible Open-Ended Systems [47.172735322186]
オープンエンドレスネス(Open-Endedness)とは、AIシステムが新規で多様なアーティファクトやソリューションを継続的に自律的に生成する能力である。
このポジションペーパーは、Open-Ended AIの本質的に動的で自己伝播的な性質は、重大な、未発見のリスクをもたらすと主張している。
論文 参考訳(メタデータ) (2025-02-06T21:32:07Z) - Deep Learning Under Siege: Identifying Security Vulnerabilities and Risk Mitigation Strategies [0.5062312533373299]
我々は、本番環境にデプロイされた現在のディープラーニングモデルに関連するセキュリティ上の課題を提示し、将来のDL技術の課題を予想する。
本稿では,これらの課題を抑制するためのリスク軽減手法を提案し,これらの指標の有効性を測定するための計量評価を行う。
論文 参考訳(メタデータ) (2024-09-14T19:54:12Z) - EARBench: Towards Evaluating Physical Risk Awareness for Task Planning of Foundation Model-based Embodied AI Agents [53.717918131568936]
EAI(Embodied AI)は、高度なAIモデルを現実世界のインタラクションのための物理的なエンティティに統合する。
高レベルのタスク計画のためのEAIエージェントの"脳"としてのファンデーションモデルは、有望な結果を示している。
しかし、これらのエージェントの物理的環境への展開は、重大な安全性上の課題を呈している。
本研究では,EAIシナリオにおける身体的リスクの自動評価のための新しいフレームワークEARBenchを紹介する。
論文 参考訳(メタデータ) (2024-08-08T13:19:37Z) - Generative AI and the problem of existential risk [0.0]
ジェネレーティブAIは、AIの現実的リスクに対する懸念の焦点となっている。
この章は、生成的AIに関連する存在的リスクの恐れを根底にしている重要な懸念を強調して、議論を軽視することを目的としている。
論文 参考訳(メタデータ) (2024-07-18T10:16:24Z) - Risks and Opportunities of Open-Source Generative AI [64.86989162783648]
Generative AI(Gen AI)の応用は、科学や医学、教育など、さまざまな分野に革命をもたらすことが期待されている。
こうした地震の変化の可能性は、この技術の潜在的なリスクについて活発に議論を巻き起こし、より厳格な規制を要求した。
この規制は、オープンソースの生成AIの誕生する分野を危険にさらす可能性がある。
論文 参考訳(メタデータ) (2024-05-14T13:37:36Z) - Security Risks Concerns of Generative AI in the IoT [9.35121449708677]
モノのインターネット(IoT)が、生成的人工知能(AI)とますます交差する時代において、この記事では、この統合に固有の突発的なセキュリティリスクを精査する。
我々は、生成AIがIoTのイノベーションを促進する方法について検討し、生成AIを使用する際のデータ漏洩の可能性と、生成AI技術のIoTエコシステムにおける誤用を分析します。
論文 参考訳(メタデータ) (2024-03-29T20:28:30Z) - On the Challenges and Opportunities in Generative AI [135.2754367149689]
現在の大規模生成AIモデルは、ドメイン間で広く採用されるのを妨げるいくつかの基本的な問題に十分対応していない、と我々は主張する。
本研究は、現代の生成型AIパラダイムにおける重要な未解決課題を特定し、その能力、汎用性、信頼性をさらに向上するために取り組まなければならない。
論文 参考訳(メタデータ) (2024-02-28T15:19:33Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
我々は、大規模社会被害、悪意のある使用、自律型AIシステムに対する人間の制御の不可逆的な喪失を含むリスクについて説明する。
このようなリスクがどのように発生し、どのように管理するかについては、合意の欠如があります。
現在のガバナンスイニシアチブには、誤用や無謀を防ぎ、自律システムにほとんど対処するメカニズムや制度が欠けている。
論文 参考訳(メタデータ) (2023-10-26T17:59:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。