論文の概要: Security Risks Concerns of Generative AI in the IoT
- arxiv url: http://arxiv.org/abs/2404.00139v1
- Date: Fri, 29 Mar 2024 20:28:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 07:07:01.881559
- Title: Security Risks Concerns of Generative AI in the IoT
- Title(参考訳): IoTにおける生成AIのセキュリティリスク
- Authors: Honghui Xu, Yingshu Li, Olusesi Balogun, Shaoen Wu, Yue Wang, Zhipeng Cai,
- Abstract要約: モノのインターネット(IoT)が、生成的人工知能(AI)とますます交差する時代において、この記事では、この統合に固有の突発的なセキュリティリスクを精査する。
我々は、生成AIがIoTのイノベーションを促進する方法について検討し、生成AIを使用する際のデータ漏洩の可能性と、生成AI技術のIoTエコシステムにおける誤用を分析します。
- 参考スコア(独自算出の注目度): 9.35121449708677
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In an era where the Internet of Things (IoT) intersects increasingly with generative Artificial Intelligence (AI), this article scrutinizes the emergent security risks inherent in this integration. We explore how generative AI drives innovation in IoT and we analyze the potential for data breaches when using generative AI and the misuse of generative AI technologies in IoT ecosystems. These risks not only threaten the privacy and efficiency of IoT systems but also pose broader implications for trust and safety in AI-driven environments. The discussion in this article extends to strategic approaches for mitigating these risks, including the development of robust security protocols, the multi-layered security approaches, and the adoption of AI technological solutions. Through a comprehensive analysis, this article aims to shed light on the critical balance between embracing AI advancements and ensuring stringent security in IoT, providing insights into the future direction of these intertwined technologies.
- Abstract(参考訳): モノのインターネット(IoT)が、生成的人工知能(AI)とますます交差する時代において、この記事では、この統合に固有の突発的なセキュリティリスクを精査する。
我々は、生成AIがIoTのイノベーションを促進する方法について検討し、生成AIを使用する際のデータ漏洩の可能性と、生成AI技術のIoTエコシステムにおける誤用を分析します。
これらのリスクは、IoTシステムのプライバシと効率を脅かすだけでなく、AI駆動環境における信頼性と安全性に広範な影響を及ぼす。
この記事では、堅牢なセキュリティプロトコルの開発、多層セキュリティアプローチ、AI技術ソリューションの採用など、これらのリスクを軽減するための戦略的アプローチについて論じる。
包括的な分析を通じて、この記事では、AIの進歩を受け入れることと、IoTにおける厳格なセキュリティを確保することの致命的なバランスについて光を当てることを目的としています。
関連論文リスト
- Building Trust: Foundations of Security, Safety and Transparency in AI [0.23301643766310373]
我々は、問題の追跡、修復、AIモデルのライフサイクルとオーナシッププロセスの明らかな欠如といった課題を強調しながら、現在のセキュリティと安全性のシナリオをレビューする。
本稿では,AIモデルの開発と運用において,より標準化されたセキュリティ,安全性,透明性を実現するための基礎的要素を提供する。
論文 参考訳(メタデータ) (2024-11-19T06:55:57Z) - AI Horizon Scanning -- White Paper p3395, IEEE-SA. Part III: Technology Watch: a selection of key developments, emerging technologies, and industry trends in Artificial Intelligence [0.3277163122167434]
生成人工知能(AI)技術は、Chat-GPTの画期的なリリースに続く前例のない急速な開発段階にある。
AI製品の展開が幾何学的に増加するにつれて、AI技術が提供する脅威と機会にかなりの注意が向けられている。
この写本は、IEEE-SA の p3995 It Standard for implementation of Safeguards, Controls, and Preventive Techniques for Artificial Intelligence Models の開発を知らせる一連の白書の3番目のものである。
論文 参考訳(メタデータ) (2024-11-05T19:04:42Z) - Generative AI Agents in Autonomous Machines: A Safety Perspective [9.02400798202199]
生成AIエージェントは、非並列機能を提供するが、ユニークな安全性上の懸念もある。
本研究では、生成モデルが物理自律機械にエージェントとして統合される際の安全要件の進化について検討する。
我々は、自律機械で生成AI技術を使用するための総合的な安全スコアカードの開発と実装を推奨する。
論文 参考訳(メタデータ) (2024-10-20T20:07:08Z) - Trustworthy, Responsible, and Safe AI: A Comprehensive Architectural Framework for AI Safety with Challenges and Mitigations [14.150792596344674]
AI安全性は、AIシステムの安全な採用とデプロイにおいて重要な領域である。
私たちの目標は、AI安全研究の進歩を促進し、究極的には、デジタルトランスフォーメーションに対する人々の信頼を高めることです。
論文 参考訳(メタデータ) (2024-08-23T09:33:48Z) - EAIRiskBench: Towards Evaluating Physical Risk Awareness for Task Planning of Foundation Model-based Embodied AI Agents [47.69642609574771]
EAI(Embodied AI)は、高度なAIモデルを現実世界のインタラクションのための物理的なエンティティに統合する。
高レベルのタスク計画のためのEAIエージェントの"脳"としてのファンデーションモデルは、有望な結果を示している。
しかし、これらのエージェントの物理的環境への展開は、重大な安全性上の課題を呈している。
EAIRiskBenchは、EAIシナリオにおける自動物理的リスクアセスメントのための新しいフレームワークである。
論文 参考訳(メタデータ) (2024-08-08T13:19:37Z) - Towards Guaranteed Safe AI: A Framework for Ensuring Robust and Reliable AI Systems [88.80306881112313]
我々は、AI安全性に対する一連のアプローチを紹介し、定義する。
これらのアプローチの中核的な特徴は、高保証の定量的安全性保証を備えたAIシステムを作ることである。
これら3つのコアコンポーネントをそれぞれ作成するためのアプローチを概説し、主な技術的課題を説明し、それらに対する潜在的なソリューションをいくつか提案します。
論文 参考訳(メタデータ) (2024-05-10T17:38:32Z) - Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness [53.91018508439669]
この研究は、人工知能を自律走行車(AV)に統合する複雑さを探求する
AIコンポーネントがもたらした課題と、テスト手順への影響を調べます。
本稿は、重要な課題を特定し、AV技術におけるAIの研究・開発に向けた今後の方向性を提案する。
論文 参考訳(メタデータ) (2024-02-21T08:29:42Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
我々は、大規模社会被害、悪意のある使用、自律型AIシステムに対する人間の制御の不可逆的な喪失を含むリスクについて説明する。
このようなリスクがどのように発生し、どのように管理するかについては、合意の欠如があります。
現在のガバナンスイニシアチブには、誤用や無謀を防ぎ、自律システムにほとんど対処するメカニズムや制度が欠けている。
論文 参考訳(メタデータ) (2023-10-26T17:59:06Z) - Towards Artificial General Intelligence (AGI) in the Internet of Things
(IoT): Opportunities and Challenges [55.82853124625841]
人工知能(Artificial General Intelligence, AGI)は、人間の認知能力でタスクを理解し、学習し、実行することができる能力を持つ。
本研究は,モノのインターネットにおけるAGIの実現に向けた機会と課題を探究する。
AGIに注入されたIoTの応用スペクトルは広く、スマートグリッド、住宅環境、製造、輸送から環境モニタリング、農業、医療、教育まで幅広い領域をカバーしている。
論文 参考訳(メタデータ) (2023-09-14T05:43:36Z) - AI Maintenance: A Robustness Perspective [91.28724422822003]
我々は、AIライフサイクルにおけるロバストネスの課題を強調し、自動車のメンテナンスに類似させることで、AIのメンテナンスを動機付ける。
本稿では,ロバストネスリスクの検出と軽減を目的としたAIモデル検査フレームワークを提案する。
我々のAIメンテナンスの提案は、AIライフサイクル全体を通して堅牢性評価、状態追跡、リスクスキャン、モデル硬化、規制を促進する。
論文 参考訳(メタデータ) (2023-01-08T15:02:38Z) - Machine and Deep Learning for IoT Security and Privacy: Applications,
Challenges, and Future Directions [0.0]
IoT(Internet of Things)の統合は、多数のインテリジェントデバイスを人間による最小限の干渉で接続する。
現在のセキュリティアプローチも改善され、IoT環境を効果的に保護できる。
ディープラーニング(DL)/機械学習(ML)メソッドは、IoTシステムからセキュリティ上のインテリジェンスシステムへの安全な接触を可能にするため、IoTシステムを保護するために不可欠である。
論文 参考訳(メタデータ) (2022-10-24T19:02:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。