論文の概要: Differentiable Mapper For Topological Optimization Of Data
Representation
- arxiv url: http://arxiv.org/abs/2402.12854v1
- Date: Tue, 20 Feb 2024 09:33:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-21 16:10:06.262822
- Title: Differentiable Mapper For Topological Optimization Of Data
Representation
- Title(参考訳): データ表現の位相最適化のための微分可能なマッパー
- Authors: Ziyad Oulhaj, Mathieu Carri\`ere and Bertrand Michel
- Abstract要約: 我々は,Mapperグラフに対する最初のフィルタ最適化スキームを提供するためにトポロジを組み込んだ最近提案されたフレームワークを構築した。
複数のデータセット上でMapperグラフ表現を最適化することで,提案手法の有用性を示す。
- 参考スコア(独自算出の注目度): 33.33724208084121
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Unsupervised data representation and visualization using tools from topology
is an active and growing field of Topological Data Analysis (TDA) and data
science. Its most prominent line of work is based on the so-called Mapper
graph, which is a combinatorial graph whose topological structures (connected
components, branches, loops) are in correspondence with those of the data
itself. While highly generic and applicable, its use has been hampered so far
by the manual tuning of its many parameters-among these, a crucial one is the
so-called filter: it is a continuous function whose variations on the data set
are the main ingredient for both building the Mapper representation and
assessing the presence and sizes of its topological structures. However, while
a few parameter tuning methods have already been investigated for the other
Mapper parameters (i.e., resolution, gain, clustering), there is currently no
method for tuning the filter itself. In this work, we build on a recently
proposed optimization framework incorporating topology to provide the first
filter optimization scheme for Mapper graphs. In order to achieve this, we
propose a relaxed and more general version of the Mapper graph, whose
convergence properties are investigated. Finally, we demonstrate the usefulness
of our approach by optimizing Mapper graph representations on several datasets,
and showcasing the superiority of the optimized representation over arbitrary
ones.
- Abstract(参考訳): トポロジーのツールを使った教師なしのデータ表現と可視化は、トポロジカルデータ分析(tda)とデータサイエンスの活発で成長中の分野である。
このグラフは、トポロジ構造(連結成分、分岐、ループ)がデータ自体と対応している組合せグラフである。
高度に汎用的かつ適用性が高いが、これら多くのパラメータの手動チューニングによって使用が妨げられているが、重要なものはいわゆるフィルターである:データセット上のバリエーションがマッパー表現の構築とトポロジー構造の存在と大きさの評価の両方の主要な要素である連続関数である。
しかしながら、他のマッパーパラメータ(レゾリューション、ゲイン、クラスタリング)については、既にいくつかのパラメータチューニング方法が研究されているが、フィルタ自体のチューニング方法は存在しない。
本研究では,マッパーグラフに対する最初のフィルタ最適化スキームを提供するため,トポロジーを組み込んだ最適化フレームワークを構築した。
そこで本研究では,収束特性を調べるマッパーグラフの,より緩やかでより一般的なバージョンを提案する。
最後に,複数のデータセット上でのマッパーグラフ表現を最適化し,任意のデータに対して最適化表現の優越性を示す手法の有用性を示す。
関連論文リスト
- A distribution-guided Mapper algorithm [0.3683202928838613]
本稿ではD-Mapperという分布誘導型Mapperアルゴリズムを提案する。
提案アルゴリズムは確率的モデルに基づく手法であり,非確率的手法の代替となる可能性がある。
数値実験により,D-Mapperは様々なシナリオにおいて従来のMapperアルゴリズムより優れていることが示された。
論文 参考訳(メタデータ) (2024-01-19T17:07:05Z) - $G$-Mapper: Learning a Cover in the Mapper Construction [0.7852714805965528]
Mapperアルゴリズムは、与えられたデータセットの構造を反映したグラフを出力するトポロジカルデータ解析(TDA)の可視化技術である。
本稿では,正規性に関する統計的テストに従って繰り返し被覆を分割することで,Mapperグラフの被覆を最適化するアルゴリズムを提案する。
我々のアルゴリズムは,アンダーソン・ダーリング試験を反復的に適用することにより,$k$-meansの最適なクラスタ数を探索する$G$-meansクラスタリングに基づいている。
論文 参考訳(メタデータ) (2023-09-12T22:51:16Z) - Graph Signal Sampling for Inductive One-Bit Matrix Completion: a
Closed-form Solution [112.3443939502313]
グラフ信号解析と処理の利点を享受する統合グラフ信号サンプリングフレームワークを提案する。
キーとなる考え方は、各ユーザのアイテムのレーティングをアイテムイットグラフの頂点上の関数(信号)に変換することである。
オンライン設定では、グラフフーリエ領域における連続ランダムガウス雑音を考慮したベイズ拡張(BGS-IMC)を開発する。
論文 参考訳(メタデータ) (2023-02-08T08:17:43Z) - GrannGAN: Graph annotation generative adversarial networks [72.66289932625742]
本稿では,高次元分布をモデル化し,グラフスケルトンと整合した複雑な関係特徴構造を持つデータの新しい例を生成することの問題点を考察する。
提案するモデルは,タスクを2つのフェーズに分割することで,各データポイントのグラフ構造に制約されたデータ特徴を生成する問題に対処する。
第一に、与えられたグラフのノードに関連する機能の分布をモデル化し、第二に、ノードのフィーチャに条件付きでエッジ機能を補完する。
論文 参考訳(メタデータ) (2022-12-01T11:49:07Z) - Learning Optimal Graph Filters for Clustering of Attributed Graphs [20.810096547938166]
多くの現実世界のシステムは、システム内の異なるエンティティがノードによって表現され、エッジによって相互作用するグラフとして表現することができる。
グラフィカルな構造を持つ大規模なデータセットを研究する上で重要なタスクはグラフクラスタリングである。
本稿では,FIR(Finite Impulse Response)およびARMA(Autoregressive moving Average)グラフフィルタのパラメータをクラスタリングに最適化したグラフ信号処理手法を提案する。
論文 参考訳(メタデータ) (2022-11-09T01:49:23Z) - SHGNN: Structure-Aware Heterogeneous Graph Neural Network [77.78459918119536]
本稿では、上記の制約に対処する構造対応不均一グラフニューラルネットワーク(SHGNN)を提案する。
まず,メタパス内の中間ノードの局所構造情報を取得するために,特徴伝搬モジュールを利用する。
次に、ツリーアテンションアグリゲータを使用して、グラフ構造情報をメタパス上のアグリゲーションモジュールに組み込む。
最後に、メタパスアグリゲータを利用して、異なるメタパスから集約された情報を融合する。
論文 参考訳(メタデータ) (2021-12-12T14:18:18Z) - Auto-weighted Multi-view Feature Selection with Graph Optimization [90.26124046530319]
グラフ学習に基づく新しい教師なしマルチビュー特徴選択モデルを提案する。
1) 特徴選択過程において, 異なる視点で共有されたコンセンサス類似度グラフが学習される。
各種データセットを用いた実験により,提案手法が最先端手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-04-11T03:25:25Z) - Building powerful and equivariant graph neural networks with structural
message-passing [74.93169425144755]
本稿では,2つのアイデアに基づいた,強力かつ同変なメッセージパッシングフレームワークを提案する。
まず、各ノードの周囲の局所的コンテキスト行列を学習するために、特徴に加えてノードの1ホット符号化を伝搬する。
次に,メッセージのパラメトリゼーション手法を提案する。
論文 参考訳(メタデータ) (2020-06-26T17:15:16Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
本稿では,ノード近接を利用したグラフプーリング手法を提案し,そのマルチホップトポロジを用いたグラフデータの階層的表現学習を改善する。
その結果,提案したグラフプーリング戦略は,公開グラフ分類ベンチマークデータセットの集合において,最先端のパフォーマンスを達成できることが示唆された。
論文 参考訳(メタデータ) (2020-06-19T13:09:44Z) - ShapeVis: High-dimensional Data Visualization at Scale [10.007129417823858]
トポロジカルデータ解析にインスパイアされたポイントクラウドデータのためのスケーラブルな可視化技術であるShapeVisを紹介する。
本手法は,圧縮された図形表現において,データの基底となる幾何学的および位相的構造をキャプチャする。
論文 参考訳(メタデータ) (2020-01-15T07:59:13Z) - Homology-Preserving Multi-Scale Graph Skeletonization Using Mapper on
Graphs [5.86893539706548]
本稿では、トポロジカルデータ解析の一般的なツールであるmapper構築をグラフ視覚化に適用することを提案する。
我々は,グラフのホモロジー保存骨格を生成するモグ (mog) と呼ばれる,重み付けされた非方向グラフを対象とするマッパー構成のバリエーションを開発する。
我々は,このような骨格のインタラクティブな探索を可能にするソフトウェアツールを提供し,本手法の合成および実世界のデータに対する有効性を実証する。
論文 参考訳(メタデータ) (2018-04-03T19:18:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。