論文の概要: Defending Jailbreak Prompts via In-Context Adversarial Game
- arxiv url: http://arxiv.org/abs/2402.13148v1
- Date: Tue, 20 Feb 2024 17:04:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-21 14:17:19.294010
- Title: Defending Jailbreak Prompts via In-Context Adversarial Game
- Title(参考訳): In-Context Adversarial Gameによる脱獄対策
- Authors: Yujun Zhou, Yufei Han, Haomin Zhuang, Taicheng Guo, Kehan Guo, Zhenwen
Liang, Hongyan Bao and Xiangliang Zhang
- Abstract要約: In-Context Adversarial Game(ICAG)を導入し、細調整を必要とせずにジェイルブレイクを防御する。
静的データセットに依存する従来の方法とは異なり、ICAGは防御エージェントと攻撃エージェントの両方を強化するために反復的なプロセスを採用している。
ICAGにより保護されたLSMがジェイルブレイクの成功率を大幅に低下させるICAGの有効性を実証した。
- 参考スコア(独自算出の注目度): 34.83853184278604
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) demonstrate remarkable capabilities across
diverse applications. However, concerns regarding their security, particularly
the vulnerability to jailbreak attacks, persist. Drawing inspiration from
adversarial training in deep learning and LLM agent learning processes, we
introduce the In-Context Adversarial Game (ICAG) for defending against
jailbreaks without the need for fine-tuning. ICAG leverages agent learning to
conduct an adversarial game, aiming to dynamically extend knowledge to defend
against jailbreaks. Unlike traditional methods that rely on static datasets,
ICAG employs an iterative process to enhance both the defense and attack
agents. This continuous improvement process strengthens defenses against newly
generated jailbreak prompts. Our empirical studies affirm ICAG's efficacy,
where LLMs safeguarded by ICAG exhibit significantly reduced jailbreak success
rates across various attack scenarios. Moreover, ICAG demonstrates remarkable
transferability to other LLMs, indicating its potential as a versatile defense
mechanism.
- Abstract(参考訳): 大規模言語モデル(LLM)は多様なアプリケーションにまたがる優れた機能を示している。
しかし、セキュリティ、特に脱獄攻撃の脆弱性に関する懸念は継続している。
深層学習とLLMエージェント学習プロセスにおける対人訓練からインスピレーションを得て, 細調整を必要とせずにジェイルブレイクを防ぎつつ, ICAG(In-Context Adversarial Game)を導入する。
icagはエージェント・ラーニングを利用して敵のゲームを実行し、脱獄を防ぐために知識を動的に拡張することを目指している。
静的データセットに依存する従来の方法とは異なり、ICAGは防御エージェントと攻撃エージェントの両方を強化するために反復的なプロセスを採用している。
この継続的改善プロセスは、新しく生成されたジェイルブレイクプロンプトに対する防御を強化する。
ICAGにより保護されたLSMは、様々な攻撃シナリオにおけるジェイルブレイクの成功率を大幅に低下させる。
さらにICAGは他のLLMへの顕著な転写可能性を示し、多目的防御機構としての可能性を示している。
関連論文リスト
- Transferable Ensemble Black-box Jailbreak Attacks on Large Language Models [0.0]
我々は,様々なLSM-as-Attackerメソッドを組み込んだ新しいブラックボックス・ジェイルブレイク攻撃フレームワークを提案する。
本手法は,既存のジェイルブレイク研究と実践から得られた3つの重要な知見に基づいて設計されている。
論文 参考訳(メタデータ) (2024-10-31T01:55:33Z) - Deciphering the Chaos: Enhancing Jailbreak Attacks via Adversarial Prompt Translation [71.92055093709924]
そこで本稿では, ガーブレッドの逆数プロンプトを, 一貫性のある, 可読性のある自然言語の逆数プロンプトに"翻訳"する手法を提案する。
また、jailbreakプロンプトの効果的な設計を発見し、jailbreak攻撃の理解を深めるための新しいアプローチも提供する。
本稿では,AdvBench上でのLlama-2-Chatモデルに対する攻撃成功率は90%以上である。
論文 参考訳(メタデータ) (2024-10-15T06:31:04Z) - HSF: Defending against Jailbreak Attacks with Hidden State Filtering [14.031010511732008]
隠れ状態フィルタ(HSF)に基づくジェイルブレイク攻撃防御戦略を提案する。
HSFは、推論プロセスが始まる前に、モデルが相手の入力をプリエンプティブに識別し、拒否することを可能にする。
不正なユーザクエリに対する応答を最小限に抑えながら、Jailbreak攻撃の成功率を大幅に低下させる。
論文 参考訳(メタデータ) (2024-08-31T06:50:07Z) - EnJa: Ensemble Jailbreak on Large Language Models [69.13666224876408]
大きな言語モデル(LLM)は、安全クリティカルなアプリケーションにますますデプロイされている。
LLMは、悪質なプロンプトを慎重に作り、ポリシーに違反するコンテンツを生成することで、まだジェイルブレイクされる可能性がある。
本稿では,プロンプトレベルのジェイルブレイクを用いて有害な命令を隠蔽し,グラデーションベースの攻撃で攻撃成功率を高め,テンプレートベースのコネクタを介して2種類のジェイルブレイク攻撃を接続する新しいEnJa攻撃を提案する。
論文 参考訳(メタデータ) (2024-08-07T07:46:08Z) - Jailbreak Attacks and Defenses Against Large Language Models: A Survey [22.392989536664288]
大規模言語モデル(LLM)は、様々なテキスト生成タスクにおいて例外的に機能している。
ジェイルブレイク」は、利用方針や社会に対する悪意ある反応をモデルに誘導する。
本稿では,ジェイルブレイク攻撃と防衛方法の包括的かつ詳細な分類法を提案する。
論文 参考訳(メタデータ) (2024-07-05T06:57:30Z) - Virtual Context: Enhancing Jailbreak Attacks with Special Token Injection [54.05862550647966]
本稿では、以前LLMセキュリティで見過ごされていた特別なトークンを活用して、ジェイルブレイク攻撃を改善する仮想コンテキストを提案する。
総合的な評価によると、仮想コンテキストによるジェイルブレイク攻撃は、4つの広く使われているジェイルブレイク手法の成功率を約40%向上させることができる。
論文 参考訳(メタデータ) (2024-06-28T11:35:54Z) - AutoJailbreak: Exploring Jailbreak Attacks and Defenses through a Dependency Lens [83.08119913279488]
本稿では,ジェイルブレイク攻撃と防衛技術における依存関係の体系的解析について述べる。
包括的な、自動化された、論理的な3つのフレームワークを提案します。
このアンサンブル・ジェイルブレイク・アタックと防衛の枠組みは,既存の研究を著しく上回る結果となった。
論文 参考訳(メタデータ) (2024-06-06T07:24:41Z) - Defensive Prompt Patch: A Robust and Interpretable Defense of LLMs against Jailbreak Attacks [59.46556573924901]
本稿では,大規模言語モデル(LLM)のための新しいプロンプトベースの防御機構であるDPPを紹介する。
従来のアプローチとは異なり、DPP は LLM の高能率を維持しながら最小の攻撃成功率 (ASR) を達成するように設計されている。
LLAMA-2-7B-ChatおよびMistral-7B-Instruct-v0.2モデルによる実験結果から,DSPの堅牢性と適応性が確認された。
論文 参考訳(メタデータ) (2024-05-30T14:40:35Z) - Distract Large Language Models for Automatic Jailbreak Attack [8.364590541640482]
大規模言語モデルの自動レッドチーム化のための新しいブラックボックスジェイルブレイクフレームワークを提案する。
我々は、Jailbreak LLMに対する反復最適化アルゴリズムを用いて、悪意のあるコンテンツの隠蔽とメモリリフレーミングを設計した。
論文 参考訳(メタデータ) (2024-03-13T11:16:43Z) - Analyzing the Inherent Response Tendency of LLMs: Real-World
Instructions-Driven Jailbreak [26.741029482196534]
大規模言語モデル(LLM)が悪意ある指示に直面すると有害な応答を発生させる現象である。
本稿では,LDMのポテンシャルを増幅することでセキュリティ機構をバイパスし,肯定応答を生成する新しい自動ジェイルブレイク手法RADIALを提案する。
提案手法は,5つのオープンソースのLLMを用いて,英語の悪意のある命令に対する攻撃性能を良好に向上すると同時に,中国語の悪意のある命令に対するクロス言語攻撃の実行において,堅牢な攻撃性能を維持する。
論文 参考訳(メタデータ) (2023-12-07T08:29:58Z) - A Wolf in Sheep's Clothing: Generalized Nested Jailbreak Prompts can Fool Large Language Models Easily [51.63085197162279]
大きな言語モデル(LLM)は有用で安全な応答を提供するように設計されている。
ジェイルブレイク」と呼ばれる 敵のプロンプトは 保護を回避できる
有効なジェイルブレイクプロンプトを生成するためにLLM自体を活用する自動フレームワークであるReNeLLMを提案する。
論文 参考訳(メタデータ) (2023-11-14T16:02:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。