論文の概要: Practical Kernel Tests of Conditional Independence
- arxiv url: http://arxiv.org/abs/2402.13196v1
- Date: Tue, 20 Feb 2024 18:07:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-21 14:08:11.166282
- Title: Practical Kernel Tests of Conditional Independence
- Title(参考訳): 条件付き独立の実用カーネルテスト
- Authors: Roman Pogodin, Antonin Schrab, Yazhe Li, Danica J. Sutherland, Arthur
Gretton
- Abstract要約: 条件付き独立テストの大きな課題は、競争力を維持しながら正しいテストレベルを取得することである。
本稿では,データ分割,補助データ,および(可能であれば)より単純な関数クラスに基づいて,テストレベルを補正するバイアス制御の3つの手法を提案する。
- 参考スコア(独自算出の注目度): 34.7957227546996
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We describe a data-efficient, kernel-based approach to statistical testing of
conditional independence. A major challenge of conditional independence
testing, absent in tests of unconditional independence, is to obtain the
correct test level (the specified upper bound on the rate of false positives),
while still attaining competitive test power. Excess false positives arise due
to bias in the test statistic, which is obtained using nonparametric kernel
ridge regression. We propose three methods for bias control to correct the test
level, based on data splitting, auxiliary data, and (where possible) simpler
function classes. We show these combined strategies are effective both for
synthetic and real-world data.
- Abstract(参考訳): 条件付き独立性の統計的テストに対する,データ効率,カーネルベースのアプローチについて述べる。
条件付き独立テストの大きな課題は、非条件付き独立テストでは欠落しており、競争力を維持しながら、正しいテストレベル(偽陽性率の特定の上限)を得ることである。
非パラメトリックカーネルリッジ回帰を用いて得られるテスト統計学のバイアスにより、過剰な偽陽性が生じる。
本稿では,データ分割,補助データ,および(可能であれば)より単純な関数クラスに基づいて,テストレベルを補正するバイアス制御法を提案する。
これらの複合戦略が合成データと実世界データの両方に有効であることを示す。
関連論文リスト
- Precise Error Rates for Computationally Efficient Testing [75.63895690909241]
本稿では,計算複雑性に着目した単純な対数-単純仮説テストの問題を再考する。
線形スペクトル統計に基づく既存の試験は、I型とII型の誤差率の間の最良のトレードオフ曲線を達成する。
論文 参考訳(メタデータ) (2023-11-01T04:41:16Z) - Sequential Predictive Two-Sample and Independence Testing [114.4130718687858]
逐次的非パラメトリック2サンプルテストと独立テストの問題点について検討する。
私たちは賭けによる(非パラメトリックな)テストの原則に基づいています。
論文 参考訳(メタデータ) (2023-04-29T01:30:33Z) - Sequential Kernelized Independence Testing [101.22966794822084]
我々は、カーネル化依存度にインスパイアされたシーケンシャルなカーネル化独立試験を設計する。
シミュレーションデータと実データの両方にアプローチのパワーを実証する。
論文 参考訳(メタデータ) (2022-12-14T18:08:42Z) - Model-Free Sequential Testing for Conditional Independence via Testing
by Betting [8.293345261434943]
提案されたテストでは、任意の依存関係構造を持つ入ってくるi.d.データストリームを分析できる。
重要な結果が検出されれば,オンライン上でのデータポイントの処理を可能とし,データ取得を停止する。
論文 参考訳(メタデータ) (2022-10-01T20:05:33Z) - Nonparametric Conditional Local Independence Testing [69.31200003384122]
条件付き局所独立は、連続的な時間プロセス間の独立関係である。
条件付き地域独立の非パラメトリックテストは行われていない。
二重機械学習に基づく非パラメトリックテストを提案する。
論文 参考訳(メタデータ) (2022-03-25T10:31:02Z) - An $\ell^p$-based Kernel Conditional Independence Test [21.689461247198388]
そこで本稿では, 最適分布の2つのカーネルベース代表者間の距離を$Lp$とする, 条件付き独立性のための計算効率の高い新しいテストを提案する。
我々は,新しい試験の性能が,高次元設定においても,統計的パワーとタイプI誤差の両方の観点から,最先端の手法よりも優れていることを示す一連の実験を行った。
論文 参考訳(メタデータ) (2021-10-28T03:18:27Z) - Testing for Outliers with Conformal p-values [14.158078752410182]
目標は、新しい独立したサンプルが参照データセットと同じ分布に属するかどうかをテストすることである。
そこで本論文では,p-値が有意であるが,異なるテストポイントに対して互いに依存する,広く適用可能なフレームワークである共形推論に基づく解を提案する。
我々は、これらのp値が正に依存し、正確な誤発見率制御を可能にすることを証明している。
論文 参考訳(メタデータ) (2021-04-16T17:59:21Z) - Cross-validation Confidence Intervals for Test Error [83.67415139421448]
この研究は、クロスバリデーションのための中心極限定理と、学習アルゴリズムの弱い安定性条件下での分散の一貫した推定器を開発する。
結果は、一般的な1対1のクロスバリデーションの選択にとって、初めてのものだ。
論文 参考訳(メタデータ) (2020-07-24T17:40:06Z) - Learning Kernel Tests Without Data Splitting [18.603394415852765]
データ分割なしにハイパーパラメータの学習と全サンプルでのテストを可能にするアプローチを提案する。
我々のアプローチの試験能力は、その分割割合に関係なく、データ分割アプローチよりも経験的に大きい。
論文 参考訳(メタデータ) (2020-06-03T14:07:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。