論文の概要: An $\ell^p$-based Kernel Conditional Independence Test
- arxiv url: http://arxiv.org/abs/2110.14868v1
- Date: Thu, 28 Oct 2021 03:18:27 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-30 07:00:50.921768
- Title: An $\ell^p$-based Kernel Conditional Independence Test
- Title(参考訳): $\ell^p$に基づくカーネル条件独立性試験
- Authors: Meyer Scetbon, Laurent Meunier, Yaniv Romano
- Abstract要約: そこで本稿では, 最適分布の2つのカーネルベース代表者間の距離を$Lp$とする, 条件付き独立性のための計算効率の高い新しいテストを提案する。
我々は,新しい試験の性能が,高次元設定においても,統計的パワーとタイプI誤差の両方の観点から,最先端の手法よりも優れていることを示す一連の実験を行った。
- 参考スコア(独自算出の注目度): 21.689461247198388
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a new computationally efficient test for conditional independence
based on the $L^{p}$ distance between two kernel-based representatives of well
suited distributions. By evaluating the difference of these two representatives
at a finite set of locations, we derive a finite dimensional approximation of
the $L^{p}$ metric, obtain its asymptotic distribution under the null
hypothesis of conditional independence and design a simple statistical test
from it. The test obtained is consistent and computationally efficient. We
conduct a series of experiments showing that the performance of our new tests
outperforms state-of-the-art methods both in term of statistical power and
type-I error even in the high dimensional setting.
- Abstract(参考訳): そこで本稿では,好適な分布の2つのカーネルベース代表者間の距離を$L^{p}$とする条件独立性テストを提案する。
これら2つの代表の差分を有限個の位置で評価することにより、l^{p}$計量の有限次元近似を導出し、条件付き独立性のヌル仮説の下で漸近分布を求め、それから単純な統計テストを設計する。
得られたテストは一貫性があり、計算効率が高い。
我々は,新しいテストの性能が,高次元設定においても統計的パワーとタイプi誤差の両方において最先端の手法を上回っていることを示す一連の実験を行った。
関連論文リスト
- Doubly Robust Conditional Independence Testing with Generative Neural Networks [8.323172773256449]
本稿では、第3の確率ベクトル$Z$を与えられた2つのジェネリックランダムベクトル$X$と$Y$の条件独立性をテストする問題に対処する。
条件分布を明示的に推定しない新しい非パラメトリック試験法を提案する。
論文 参考訳(メタデータ) (2024-07-25T01:28:59Z) - A Conditional Independence Test in the Presence of Discretization [14.917729593550199]
既存のテストメソッドは、離散化された観察しかできない場合、機能しない。
このような離散化の存在に対応するために特別に設計された条件付き独立テストを提案する。
論文 参考訳(メタデータ) (2024-04-26T18:08:15Z) - On Ranking-based Tests of Independence [0.0]
2つの確率変数 $mathbfX$ と $mathbfY$ の独立性をテストするための新しい非パラメトリックフレームワークを開発する。
我々は、ROC空間の対角線から逸脱して独立性テストを構築する様々な方法を含む幅広い階級統計を考察する。
論文 参考訳(メタデータ) (2024-03-12T10:00:00Z) - Collaborative non-parametric two-sample testing [55.98760097296213]
目標は、null仮説の$p_v = q_v$が拒否されるノードを特定することである。
グラフ構造を効率的に活用する非パラメトリックコラボレーティブ2サンプルテスト(CTST)フレームワークを提案する。
提案手法は,f-divergence Estimation, Kernel Methods, Multitask Learningなどの要素を統合する。
論文 参考訳(メタデータ) (2024-02-08T14:43:56Z) - Online non-parametric likelihood-ratio estimation by Pearson-divergence
functional minimization [55.98760097296213]
iid 観測のペア $(x_t sim p, x'_t sim q)$ が時間の経過とともに観測されるような,オンラインな非パラメトリック LRE (OLRE) のための新しいフレームワークを提案する。
本稿では,OLRE法の性能に関する理論的保証と,合成実験における実証的検証について述べる。
論文 参考訳(メタデータ) (2023-11-03T13:20:11Z) - Precise Error Rates for Computationally Efficient Testing [75.63895690909241]
本稿では,計算複雑性に着目した単純な対数-単純仮説テストの問題を再考する。
線形スペクトル統計に基づく既存の試験は、I型とII型の誤差率の間の最良のトレードオフ曲線を達成する。
論文 参考訳(メタデータ) (2023-11-01T04:41:16Z) - Boosting the Power of Kernel Two-Sample Tests [4.07125466598411]
最大平均誤差(MMD)に基づくカーネル2サンプルテストは、一般的な距離空間上の2つの分布の違いを検出する最も一般的な方法の1つである。
マハラノビス距離を用いて,複数のカーネル上でMDD推定値を組み合わせることで,カーネルテストのパワーを高める手法を提案する。
論文 参考訳(メタデータ) (2023-02-21T14:14:30Z) - Nonparametric Conditional Local Independence Testing [69.31200003384122]
条件付き局所独立は、連続的な時間プロセス間の独立関係である。
条件付き地域独立の非パラメトリックテストは行われていない。
二重機械学習に基づく非パラメトリックテストを提案する。
論文 参考訳(メタデータ) (2022-03-25T10:31:02Z) - Sampling from Arbitrary Functions via PSD Models [55.41644538483948]
まず確率分布をモデル化し,そのモデルからサンプリングする。
これらのモデルでは, 少数の評価値を用いて, 高精度に多数の密度を近似することが可能であることが示され, それらのモデルから効果的にサンプルする簡単なアルゴリズムが提示される。
論文 参考訳(メタデータ) (2021-10-20T12:25:22Z) - Cross-validation Confidence Intervals for Test Error [83.67415139421448]
この研究は、クロスバリデーションのための中心極限定理と、学習アルゴリズムの弱い安定性条件下での分散の一貫した推定器を開発する。
結果は、一般的な1対1のクロスバリデーションの選択にとって、初めてのものだ。
論文 参考訳(メタデータ) (2020-07-24T17:40:06Z) - Optimal rates for independence testing via $U$-statistic permutation
tests [7.090165638014331]
独立分布と同一分布のペアが$sigma$-finiteで分離可能な測度空間で値を取る独立性テストの問題について検討する。
最初に、独立性の有効なテストはなく、$f: D(f) geq rho2 $ という形の代替と一様に一致していることを示す。
論文 参考訳(メタデータ) (2020-01-15T19:04:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。