論文の概要: A new sociology of humans and machines
- arxiv url: http://arxiv.org/abs/2402.14410v3
- Date: Thu, 01 May 2025 14:46:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:51.654297
- Title: A new sociology of humans and machines
- Title(参考訳): 人間と機械の新しい社会学
- Authors: Milena Tsvetkova, Taha Yasseri, Niccolo Pescetelli, Tobias Werner,
- Abstract要約: 偽のソーシャルメディアアカウントや生成する人工知能チャットボットから、アルゴリズムや自動運転車、ロボット、ボット、アルゴリズムまで、増え続けている。
コンペティション、コーディネーション、協力、感染、集団意思決定の状況における一般的なダイナミクスとパターンを概観する。
より堅牢でレジリエントな人間と機械のコミュニティを確保するためには、人間と機械の新しい社会学が必要である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: From fake social media accounts and generative artificial intelligence chatbots to trading algorithms and self-driving vehicles, robots, bots and algorithms are proliferating and permeating our communication channels, social interactions, economic transactions and transportation arteries. Networks of multiple interdependent and interacting humans and intelligent machines constitute complex social systems for which the collective outcomes cannot be deduced from either human or machine behaviour alone. Under this paradigm, we review recent research and identify general dynamics and patterns in situations of competition, coordination, cooperation, contagion and collective decision-making, with context-rich examples from high-frequency trading markets, a social media platform, an open collaboration community and a discussion forum. To ensure more robust and resilient human-machine communities, we require a new sociology of humans and machines. Researchers should study these communities using complex system methods; engineers should explicitly design artificial intelligence for human-machine and machine-machine interactions; and regulators should govern the ecological diversity and social co-development of humans and machines.
- Abstract(参考訳): 偽のソーシャルメディアアカウントや生成する人工知能チャットボットから、アルゴリズムや自動運転車、ロボット、ロボット、アルゴリズムまで、私たちのコミュニケーションチャネル、社会的相互作用、経済取引、そして交通機関の普及と浸透が進んでいます。
複数の相互依存・相互作用する人間と知的な機械のネットワークは複雑な社会システムを構成しており、人間または機械の行動のみから集合的な成果を導出することはできない。
本パラダイムでは、競争、協調、協力、伝染、集団意思決定の状況における一般的なダイナミクスやパターンを、高頻度取引市場、ソーシャルメディアプラットフォーム、オープンなコラボレーションコミュニティ、ディスカッションフォーラムなどの文脈に富んだ例で概説する。
より堅牢でレジリエントな人間と機械のコミュニティを確保するためには、人間と機械の新しい社会学が必要である。
研究者は複雑なシステム手法を用いてこれらのコミュニティを研究すべきであり、技術者は人間と機械の相互作用のための人工知能を明示的に設計すべきである。
関連論文リスト
- The Human Robot Social Interaction (HSRI) Dataset: Benchmarking Foundational Models' Social Reasoning [49.32390524168273]
本研究は,実世界のソーシャルインタラクションにおいて,人工知能(AI)エージェントの社会的推論を促進することを目的としている。
我々は、言語モデル(LM)と基礎モデル(FM)の能力をベンチマークするために、大規模な実世界のヒューマンロボット社会インタラクション(HSRI)データセットを導入する。
私たちのデータセットは、400以上の現実世界の人間のソーシャルロボットインタラクションビデオと10K以上のアノテーションで構成され、ロボットの社会的エラー、能力、合理性、修正行動の詳細を記述しています。
論文 参考訳(メタデータ) (2025-04-07T06:27:02Z) - Advancing Social Intelligence in AI Agents: Technical Challenges and Open Questions [67.60397632819202]
ソーシャルインテリジェントAIエージェント(Social-AI)の構築は、多分野、マルチモーダルな研究目標である。
我々は、社会AIを前進させるために、基礎となる技術的課題と、コンピューティングコミュニティ全体にわたる研究者のためのオープンな質問を特定します。
論文 参考訳(メタデータ) (2024-04-17T02:57:42Z) - Extended Reality for Enhanced Human-Robot Collaboration: a Human-in-the-Loop Approach [2.336967926255341]
人間とロボットのコラボレーションは、機械の強さと精度と人間の創造性と知覚的理解を組み合わせることで、これらの課題に取り組みます。
本稿では,人間のループ内原理を取り入れた自律型機械学習ベースのマニピュレータの実装フレームワークを提案する。
概念的枠組みは、ロボット学習プロセスに直接人間の関与を予測し、より高い適応性とタスクの一般化をもたらす。
論文 参考訳(メタデータ) (2024-03-21T17:50:22Z) - AI, Meet Human: Learning Paradigms for Hybrid Decision Making Systems [4.936180840622583]
人間は現在、機械学習ベースのシステムと常に対話し、毎日モデルをトレーニングし、使用しています。
コンピュータサイエンス文学におけるいくつかの異なる技術は、人間の機械学習システムとの相互作用を説明するが、その分類は小さく、目的は様々である。
本調査では,現代コンピュータ科学文献が人間と機械の相互作用をどのようにモデル化しているかを理解するための概念的および技術的枠組みを提供するハイブリッド意思決定システムの分類法を提案する。
論文 参考訳(メタデータ) (2024-02-09T09:54:01Z) - Socially Cognizant Robotics for a Technology Enhanced Society [13.094097428580564]
我々は、技術・社会科学の手法を合成する学際的アプローチ、社会的認知ロボティクスを提唱する。
このアプローチは、AI駆動型ロボットの動作を形作る上で、ステークホルダーの参加を促進する必要性に従うものだ、と私たちは主張する。
我々は、従来の技術ベースのメトリクスと重要な、しかし難しいメトリクスのバランスをとる、社会的に認知されたロボット設計のためのベストプラクティスを開発します。
論文 参考訳(メタデータ) (2023-10-27T17:53:02Z) - SOTOPIA: Interactive Evaluation for Social Intelligence in Language Agents [107.4138224020773]
人工エージェントと人間との複雑な社会的相互作用をシミュレートするオープンエンド環境であるSOTOPIAを提案する。
エージェントは、複雑な社会的目標を達成するために協調し、協力し、交換し、互いに競い合う。
GPT-4は,人間よりも目標達成率が著しく低く,社会的常識的推論や戦略的コミュニケーション能力の発揮に苦慮していることがわかった。
論文 参考訳(メタデータ) (2023-10-18T02:27:01Z) - Generalizable Human-Robot Collaborative Assembly Using Imitation
Learning and Force Control [17.270360447188196]
本稿では,実演から学び,ポーズ推定を用いたロボット協調組立システムを提案する。
提案システムでは, ロボット組立シナリオにおいて, 物理的6DoFマニピュレータを用いて実験を行った。
論文 参考訳(メタデータ) (2022-12-02T20:35:55Z) - Semantic-Aware Environment Perception for Mobile Human-Robot Interaction [2.309914459672557]
本稿では,移動ロボットのための視覚ベースシステムについて,アプリオリ知識を付加せずにセマンティック・アウェア環境を実現する。
実世界のアプリケーションで我々の手法をテストすることができる移動型ヒューマノイドロボットにシステムをデプロイする。
論文 参考訳(メタデータ) (2022-11-07T08:49:45Z) - Data-driven emotional body language generation for social robotics [58.88028813371423]
社会ロボティクスでは、人間型ロボットに感情の身体的表現を生成する能力を与えることで、人間とロボットの相互作用とコラボレーションを改善することができる。
我々は、手作業で設計されたいくつかの身体表現から学習する深層学習データ駆動フレームワークを実装した。
評価実験の結果, 生成した表現の人間同型とアニマシーは手作りの表現と異なる認識が得られなかった。
論文 参考訳(メタデータ) (2022-05-02T09:21:39Z) - Spatial Computing and Intuitive Interaction: Bringing Mixed Reality and
Robotics Together [68.44697646919515]
本稿では,空間コンピューティングを応用し,新しいロボットのユースケースを実現するためのロボットシステムについて述べる。
空間コンピューティングとエゴセントリックな感覚を複合現実感デバイスに組み合わせることで、人間の行動をキャプチャして理解し、それらを空間的な意味を持つ行動に変換することができる。
論文 参考訳(メタデータ) (2022-02-03T10:04:26Z) - Human-Robot Collaboration and Machine Learning: A Systematic Review of
Recent Research [69.48907856390834]
人間ロボットコラボレーション(Human-robot collaboration、HRC)とは、人間とロボットの相互作用を探索する手法である。
本稿では,HRCの文脈における機械学習技術の利用に関する詳細な文献レビューを提案する。
論文 参考訳(メタデータ) (2021-10-14T15:14:33Z) - On the Philosophical, Cognitive and Mathematical Foundations of
Symbiotic Autonomous Systems (SAS) [87.3520234553785]
共生自律システム(SAS)は、自律的な集団知能を示す高度なインテリジェントおよび認知システムです。
この研究は、知性、認知、コンピュータ、システム科学の最新の進歩に根ざしたSASの理論的枠組みを示す。
論文 参考訳(メタデータ) (2021-02-11T05:44:25Z) - From Learning to Relearning: A Framework for Diminishing Bias in Social
Robot Navigation [3.3511723893430476]
社会的ナビゲーションモデルは、差別や差別のような社会的不公平を複製し、促進し、増幅することができる。
提案するフレームワークは,安全性と快適性を考慮したソーシャルコンテキストを学習プロセスに組み込んだtextitlearningと,発生前に潜在的に有害な結果を検出し修正するtextitrelearningの2つのコンポーネントで構成されている。
論文 参考訳(メタデータ) (2021-01-07T17:42:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。