論文の概要: Parallelized Midpoint Randomization for Langevin Monte Carlo
- arxiv url: http://arxiv.org/abs/2402.14434v2
- Date: Fri, 23 Feb 2024 05:14:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-26 11:46:05.028555
- Title: Parallelized Midpoint Randomization for Langevin Monte Carlo
- Title(参考訳): Langevin Monte Carlo の並列化中点ランダム化
- Authors: Lu Yu, Arnak Dalalyan
- Abstract要約: 対象分布は滑らかで対数対数密度が強いことが特徴である。
並列化されたランダム化中間点法を再検討し、最近開発された純粋にシーケンシャルなバージョンを解析するための証明手法を用いる。
サンプリングとターゲット密度の間のワッサーシュタイン距離の上限を導出する。
- 参考スコア(独自算出の注目度): 6.555157647688725
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We explore the sampling problem within the framework where parallel
evaluations of the gradient of the log-density are feasible. Our investigation
focuses on target distributions characterized by smooth and strongly
log-concave densities. We revisit the parallelized randomized midpoint method
and employ proof techniques recently developed for analyzing its purely
sequential version. Leveraging these techniques, we derive upper bounds on the
Wasserstein distance between the sampling and target densities. These bounds
quantify the runtime improvement achieved by utilizing parallel processing
units, which can be considerable.
- Abstract(参考訳): 本稿では,対数密度の勾配を並列に評価できるフレームワークにおけるサンプリング問題を検討する。
本研究は,スムーズな対数凹凸密度を特徴とするターゲット分布に着目した。
本研究では,並列化乱数点法を再検討し,その純粋逐次解析法として最近開発された証明手法を用いた。
これらの手法を用いることで、サンプリングとターゲット密度の間のワッサーシュタイン距離の上限を導出する。
これらの境界は並列処理ユニットを利用することで実行時の改善を定量化する。
関連論文リスト
- Constrained Sampling with Primal-Dual Langevin Monte Carlo [15.634831573546041]
この研究は、正規化定数まで既知の確率分布からサンプリングする問題を考察する。
一般非線形関数の期待値によって定義された統計的制約の集合を満たす。
我々は,目標分布とサンプルを同時に制約する離散時間原始二元Langevin Monte Carloアルゴリズム(PD-LMC)を提唱した。
論文 参考訳(メタデータ) (2024-11-01T13:26:13Z) - A Practical Diffusion Path for Sampling [8.174664278172367]
拡散モデルは生成モデルにおいてランゲヴィン過程を導くスコアベクトルを推定するために用いられる。
従来のアプローチはモンテカルロ推定器に依存しており、計算的に計算量が多いか、サンプル非効率である。
そこで我々は,いわゆる拡張経路に依存して,クローズド形式で利用可能なスコアベクトルを生成する,計算的に魅力的な代替案を提案する。
論文 参考訳(メタデータ) (2024-06-20T07:00:56Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
本論文では,乗算器の交互方向法に基づく分散サンプリング手法を提案する。
我々は,アルゴリズムの収束に関する理論的保証と,その最先端性に関する実験的証拠の両方を提供する。
シミュレーションでは,線形回帰タスクとロジスティック回帰タスクにアルゴリズムを配置し,その高速収束を既存の勾配法と比較した。
論文 参考訳(メタデータ) (2024-01-29T02:08:40Z) - Adaptive Annealed Importance Sampling with Constant Rate Progress [68.8204255655161]
Annealed Importance Smpling (AIS)は、抽出可能な分布から重み付けされたサンプルを合成する。
本稿では,alpha$-divergencesに対する定数レートAISアルゴリズムとその効率的な実装を提案する。
論文 参考訳(メタデータ) (2023-06-27T08:15:28Z) - Langevin Monte Carlo for strongly log-concave distributions: Randomized
midpoint revisited [4.551456632596834]
我々は,バニラ・ランゲヴィン過程の中間点の離散化を解析する。
この分析は根底にある原則を明確にし、貴重な洞察を提供するのに役立つ。
我々は、オイラー離散化を伴うランゲヴィン過程の新たな保証を確立する。
論文 参考訳(メタデータ) (2023-06-14T13:18:09Z) - Density Ratio Estimation via Infinitesimal Classification [85.08255198145304]
そこで我々は, DRE-inftyを提案する。 DRE-inftyは, 密度比推定(DRE)を, より簡単なサブプロブレムに還元する手法である。
モンテカルロ法にインスパイアされ、中間ブリッジ分布の無限連続体を介して2つの分布の間を滑らかに補間する。
提案手法は,複雑な高次元データセット上での相互情報推定やエネルギーベースモデリングなどの下流タスクにおいて良好に動作することを示す。
論文 参考訳(メタデータ) (2021-11-22T06:26:29Z) - Pathwise Conditioning of Gaussian Processes [72.61885354624604]
ガウス過程後部をシミュレーションするための従来のアプローチでは、有限個の入力位置のプロセス値の限界分布からサンプルを抽出する。
この分布中心の特徴づけは、所望のランダムベクトルのサイズで3次スケールする生成戦略をもたらす。
条件付けのこのパスワイズ解釈が、ガウス過程の後部を効率的にサンプリングするのに役立てる近似の一般族をいかに生み出すかを示す。
論文 参考訳(メタデータ) (2020-11-08T17:09:37Z) - Continuous Regularized Wasserstein Barycenters [51.620781112674024]
正規化ワッサーシュタイン・バリセンタ問題に対する新しい双対定式化を導入する。
我々は、強い双対性を確立し、対応する主対関係を用いて、正規化された輸送問題の双対ポテンシャルを用いて暗黙的にバリセンターをパラメトリゼーションする。
論文 参考訳(メタデータ) (2020-08-28T08:28:06Z) - Efficiently Sampling Functions from Gaussian Process Posteriors [76.94808614373609]
高速後部サンプリングのための簡易かつ汎用的なアプローチを提案する。
分離されたサンプルパスがガウス過程の後部を通常のコストのごく一部で正確に表現する方法を実証する。
論文 参考訳(メタデータ) (2020-02-21T14:03:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。