論文の概要: Parallelized Midpoint Randomization for Langevin Monte Carlo
- arxiv url: http://arxiv.org/abs/2402.14434v2
- Date: Fri, 23 Feb 2024 05:14:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-26 11:46:05.028555
- Title: Parallelized Midpoint Randomization for Langevin Monte Carlo
- Title(参考訳): Langevin Monte Carlo の並列化中点ランダム化
- Authors: Lu Yu, Arnak Dalalyan
- Abstract要約: 対象分布は滑らかで対数対数密度が強いことが特徴である。
並列化されたランダム化中間点法を再検討し、最近開発された純粋にシーケンシャルなバージョンを解析するための証明手法を用いる。
サンプリングとターゲット密度の間のワッサーシュタイン距離の上限を導出する。
- 参考スコア(独自算出の注目度): 6.555157647688725
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We explore the sampling problem within the framework where parallel
evaluations of the gradient of the log-density are feasible. Our investigation
focuses on target distributions characterized by smooth and strongly
log-concave densities. We revisit the parallelized randomized midpoint method
and employ proof techniques recently developed for analyzing its purely
sequential version. Leveraging these techniques, we derive upper bounds on the
Wasserstein distance between the sampling and target densities. These bounds
quantify the runtime improvement achieved by utilizing parallel processing
units, which can be considerable.
- Abstract(参考訳): 本稿では,対数密度の勾配を並列に評価できるフレームワークにおけるサンプリング問題を検討する。
本研究は,スムーズな対数凹凸密度を特徴とするターゲット分布に着目した。
本研究では,並列化乱数点法を再検討し,その純粋逐次解析法として最近開発された証明手法を用いた。
これらの手法を用いることで、サンプリングとターゲット密度の間のワッサーシュタイン距離の上限を導出する。
これらの境界は並列処理ユニットを利用することで実行時の改善を定量化する。
関連論文リスト
- Parallel simulation for sampling under isoperimetry and score-based diffusion models [56.39904484784127]
データサイズが大きくなるにつれて、イテレーションコストの削減が重要な目標になります。
科学計算における初期値問題の並列シミュレーションの成功に触発されて,タスクをサンプリングするための並列Picard法を提案する。
本研究は,動力学に基づくサンプリング・拡散モデルの科学的計算におけるシミュレーション手法の潜在的利点を強調した。
論文 参考訳(メタデータ) (2024-12-10T11:50:46Z) - Constrained Sampling with Primal-Dual Langevin Monte Carlo [15.634831573546041]
この研究は、正規化定数まで既知の確率分布からサンプリングする問題を考察する。
一般非線形関数の期待値によって定義された統計的制約の集合を満たす。
我々は,目標分布とサンプルを同時に制約する離散時間原始二元Langevin Monte Carloアルゴリズム(PD-LMC)を提唱した。
論文 参考訳(メタデータ) (2024-11-01T13:26:13Z) - In-and-Out: Algorithmic Diffusion for Sampling Convex Bodies [7.70133333709347]
高次元凸体を一様にサンプリングするための新しいランダムウォークを提案する。
出力をより強力な保証で、最先端のランタイムの複雑さを実現する。
論文 参考訳(メタデータ) (2024-05-02T16:15:46Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
本論文では,乗算器の交互方向法に基づく分散サンプリング手法を提案する。
我々は,アルゴリズムの収束に関する理論的保証と,その最先端性に関する実験的証拠の両方を提供する。
シミュレーションでは,線形回帰タスクとロジスティック回帰タスクにアルゴリズムを配置し,その高速収束を既存の勾配法と比較した。
論文 参考訳(メタデータ) (2024-01-29T02:08:40Z) - Langevin Monte Carlo for strongly log-concave distributions: Randomized
midpoint revisited [4.551456632596834]
我々は,バニラ・ランゲヴィン過程の中間点の離散化を解析する。
この分析は根底にある原則を明確にし、貴重な洞察を提供するのに役立つ。
我々は、オイラー離散化を伴うランゲヴィン過程の新たな保証を確立する。
論文 参考訳(メタデータ) (2023-06-14T13:18:09Z) - Resolving the Mixing Time of the Langevin Algorithm to its Stationary
Distribution for Log-Concave Sampling [34.66940399825547]
本稿では,Langevinアルゴリズムの定常分布に対する混合時間の特徴について述べる。
本稿では,差分プライバシー文献からサンプリング文献へのアプローチを紹介する。
論文 参考訳(メタデータ) (2022-10-16T05:11:16Z) - Differentiable Annealed Importance Sampling and the Perils of Gradient
Noise [68.44523807580438]
Annealed importance sample (AIS) と関連するアルゴリズムは、限界推定のための非常に効果的なツールである。
差別性は、目的として限界確率を最適化する可能性を認めるため、望ましい性質である。
我々はメトロポリス・ハスティングスのステップを放棄して微分可能アルゴリズムを提案し、ミニバッチ計算をさらに解き放つ。
論文 参考訳(メタデータ) (2021-07-21T17:10:14Z) - Pathwise Conditioning of Gaussian Processes [72.61885354624604]
ガウス過程後部をシミュレーションするための従来のアプローチでは、有限個の入力位置のプロセス値の限界分布からサンプルを抽出する。
この分布中心の特徴づけは、所望のランダムベクトルのサイズで3次スケールする生成戦略をもたらす。
条件付けのこのパスワイズ解釈が、ガウス過程の後部を効率的にサンプリングするのに役立てる近似の一般族をいかに生み出すかを示す。
論文 参考訳(メタデータ) (2020-11-08T17:09:37Z) - Continuous Regularized Wasserstein Barycenters [51.620781112674024]
正規化ワッサーシュタイン・バリセンタ問題に対する新しい双対定式化を導入する。
我々は、強い双対性を確立し、対応する主対関係を用いて、正規化された輸送問題の双対ポテンシャルを用いて暗黙的にバリセンターをパラメトリゼーションする。
論文 参考訳(メタデータ) (2020-08-28T08:28:06Z) - Stochastic Saddle-Point Optimization for Wasserstein Barycenters [69.68068088508505]
オンラインデータストリームによって生成される有限個の点からなるランダムな確率測度に対する人口推定バリセンタ問題を考察する。
本稿では,この問題の構造を用いて,凸凹型サドル点再構成を行う。
ランダム確率測度の分布が離散的な場合、最適化アルゴリズムを提案し、その複雑性を推定する。
論文 参考訳(メタデータ) (2020-06-11T19:40:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。