論文の概要: Parallelized Midpoint Randomization for Langevin Monte Carlo
- arxiv url: http://arxiv.org/abs/2402.14434v4
- Date: Wed, 08 Jan 2025 12:19:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-09 14:52:42.483353
- Title: Parallelized Midpoint Randomization for Langevin Monte Carlo
- Title(参考訳): Langevin Monte Carlo の並列化中点ランダム化
- Authors: Lu Yu, Arnak Dalalyan,
- Abstract要約: 本稿では,対数密度勾配の並列評価が可能なフレームワークにおいて,対象確率密度関数からのサンプリング問題について検討する。
サンプリングとターゲット密度の間のワッサーシュタイン距離の上限を導出する。
- 参考スコア(独自算出の注目度): 5.548787731232499
- License:
- Abstract: We study the problem of sampling from a target probability density function in frameworks where parallel evaluations of the log-density gradient are feasible. Focusing on smooth and strongly log-concave densities, we revisit the parallelized randomized midpoint method and investigate its properties using recently developed techniques for analyzing its sequential version. Through these techniques, we derive upper bounds on the Wasserstein distance between sampling and target densities. These bounds quantify the substantial runtime improvements achieved through parallel processing.
- Abstract(参考訳): 本稿では,対数密度勾配の並列評価が可能なフレームワークにおいて,対象確率密度関数からのサンプリング問題について検討する。
円滑で強い対数凹凸密度に着目し、並列化されたランダム化中間点法を再検討し、最近開発されたシーケンシャルバージョン解析手法を用いてその特性について検討する。
これらの手法により、サンプリングとターゲット密度の間のワッサーシュタイン距離の上限を導出する。
これらの境界は、並列処理によって達成された実行時の大幅な改善を定量化します。
関連論文リスト
- Constrained Sampling with Primal-Dual Langevin Monte Carlo [15.634831573546041]
この研究は、正規化定数まで既知の確率分布からサンプリングする問題を考察する。
一般非線形関数の期待値によって定義された統計的制約の集合を満たす。
我々は,目標分布とサンプルを同時に制約する離散時間原始二元Langevin Monte Carloアルゴリズム(PD-LMC)を提唱した。
論文 参考訳(メタデータ) (2024-11-01T13:26:13Z) - A Practical Diffusion Path for Sampling [8.174664278172367]
拡散モデルは生成モデルにおいてランゲヴィン過程を導くスコアベクトルを推定するために用いられる。
従来のアプローチはモンテカルロ推定器に依存しており、計算的に計算量が多いか、サンプル非効率である。
そこで我々は,いわゆる拡張経路に依存して,クローズド形式で利用可能なスコアベクトルを生成する,計算的に魅力的な代替案を提案する。
論文 参考訳(メタデータ) (2024-06-20T07:00:56Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
本論文では,乗算器の交互方向法に基づく分散サンプリング手法を提案する。
我々は,アルゴリズムの収束に関する理論的保証と,その最先端性に関する実験的証拠の両方を提供する。
シミュレーションでは,線形回帰タスクとロジスティック回帰タスクにアルゴリズムを配置し,その高速収束を既存の勾配法と比較した。
論文 参考訳(メタデータ) (2024-01-29T02:08:40Z) - Adaptive Annealed Importance Sampling with Constant Rate Progress [68.8204255655161]
Annealed Importance Smpling (AIS)は、抽出可能な分布から重み付けされたサンプルを合成する。
本稿では,alpha$-divergencesに対する定数レートAISアルゴリズムとその効率的な実装を提案する。
論文 参考訳(メタデータ) (2023-06-27T08:15:28Z) - Langevin Monte Carlo for strongly log-concave distributions: Randomized
midpoint revisited [4.551456632596834]
我々は,バニラ・ランゲヴィン過程の中間点の離散化を解析する。
この分析は根底にある原則を明確にし、貴重な洞察を提供するのに役立つ。
我々は、オイラー離散化を伴うランゲヴィン過程の新たな保証を確立する。
論文 参考訳(メタデータ) (2023-06-14T13:18:09Z) - Density Ratio Estimation via Infinitesimal Classification [85.08255198145304]
そこで我々は, DRE-inftyを提案する。 DRE-inftyは, 密度比推定(DRE)を, より簡単なサブプロブレムに還元する手法である。
モンテカルロ法にインスパイアされ、中間ブリッジ分布の無限連続体を介して2つの分布の間を滑らかに補間する。
提案手法は,複雑な高次元データセット上での相互情報推定やエネルギーベースモデリングなどの下流タスクにおいて良好に動作することを示す。
論文 参考訳(メタデータ) (2021-11-22T06:26:29Z) - Pathwise Conditioning of Gaussian Processes [72.61885354624604]
ガウス過程後部をシミュレーションするための従来のアプローチでは、有限個の入力位置のプロセス値の限界分布からサンプルを抽出する。
この分布中心の特徴づけは、所望のランダムベクトルのサイズで3次スケールする生成戦略をもたらす。
条件付けのこのパスワイズ解釈が、ガウス過程の後部を効率的にサンプリングするのに役立てる近似の一般族をいかに生み出すかを示す。
論文 参考訳(メタデータ) (2020-11-08T17:09:37Z) - Continuous Regularized Wasserstein Barycenters [51.620781112674024]
正規化ワッサーシュタイン・バリセンタ問題に対する新しい双対定式化を導入する。
我々は、強い双対性を確立し、対応する主対関係を用いて、正規化された輸送問題の双対ポテンシャルを用いて暗黙的にバリセンターをパラメトリゼーションする。
論文 参考訳(メタデータ) (2020-08-28T08:28:06Z) - Efficiently Sampling Functions from Gaussian Process Posteriors [76.94808614373609]
高速後部サンプリングのための簡易かつ汎用的なアプローチを提案する。
分離されたサンプルパスがガウス過程の後部を通常のコストのごく一部で正確に表現する方法を実証する。
論文 参考訳(メタデータ) (2020-02-21T14:03:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。