論文の概要: Diffusion Model-Based Multiobjective Optimization for Gasoline Blending
Scheduling
- arxiv url: http://arxiv.org/abs/2402.14600v1
- Date: Sun, 4 Feb 2024 05:46:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-25 16:45:24.825623
- Title: Diffusion Model-Based Multiobjective Optimization for Gasoline Blending
Scheduling
- Title(参考訳): 拡散モデルに基づくガソリン混合スケジューリングの多目的最適化
- Authors: Wenxuan Fang and Wei Du and Renchu He and Yang Tang and Yaochu Jin and
Gary G. Yen
- Abstract要約: ガソリンブレンドスケジューリングは、精製所の生産要求を満たすためにリソース割り当てとオペレーションシークエンシングを使用する。
非線形性、整数制約、および多数の決定変数の存在は、この問題に複雑さをもたらす。
本稿では拡散モデル(DMO)により駆動される新しい多目的最適化手法を提案する。
- 参考スコア(独自算出の注目度): 30.040728803996256
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Gasoline blending scheduling uses resource allocation and operation
sequencing to meet a refinery's production requirements. The presence of
nonlinearity, integer constraints, and a large number of decision variables
adds complexity to this problem, posing challenges for traditional and
evolutionary algorithms. This paper introduces a novel multiobjective
optimization approach driven by a diffusion model (named DMO), which is
designed specifically for gasoline blending scheduling. To address integer
constraints and generate feasible schedules, the diffusion model creates
multiple intermediate distributions between Gaussian noise and the feasible
domain. Through iterative processes, the solutions transition from Gaussian
noise to feasible schedules while optimizing the objectives using the gradient
descent method. DMO achieves simultaneous objective optimization and constraint
adherence. Comparative tests are conducted to evaluate DMO's performance across
various scales. The experimental results demonstrate that DMO surpasses
state-of-the-art multiobjective evolutionary algorithms in terms of efficiency
when solving gasoline blending scheduling problems.
- Abstract(参考訳): ガソリンブレンドスケジューリングは、精製所の生産要求を満たすためにリソース割り当てとオペレーションシーケンシングを使用する。
非線形性、整数制約、そして多くの決定変数の存在は、この問題に複雑さをもたらし、伝統的および進化的アルゴリズムの課題となる。
本稿では, ガソリン混合スケジューリングに特化して設計された拡散モデル(DMO)によって駆動される新しい多目的最適化手法を提案する。
整数制約に対処し、実現可能なスケジュールを生成するために、拡散モデルはガウス雑音と実現可能領域の間の複数の中間分布を生成する。
反復過程を通じて、解は勾配降下法を用いて目的を最適化しながらガウスノイズから実現可能なスケジュールへと遷移する。
dmoは客観的最適化と制約遵守を同時に達成する。
様々なスケールでDMOの性能を評価するために比較試験を行った。
実験により,DMOはガソリンブレンディングスケジューリング問題を解く際の効率性の観点から,最先端の多目的進化アルゴリズムを超越していることが示された。
関連論文リスト
- Harnessing the Power of Gradient-Based Simulations for Multi-Objective Optimization in Particle Accelerators [5.565261874218803]
本稿では, 粒子加速器の深部微分可能強化学習アルゴリズムを用いてMOO問題の解法における微分可能性の効果を示す。
基礎となる問題は、個々の状態と行動の両方に厳密な制約を課し、ビームのエネルギー要求に対する累積的(グローバル)制約を課している。
論文 参考訳(メタデータ) (2024-11-07T15:55:05Z) - DiffSG: A Generative Solver for Network Optimization with Diffusion Model [75.27274046562806]
拡散生成モデルはより広い範囲の解を考えることができ、学習パラメータによるより強力な一般化を示す。
拡散生成モデルの本質的な分布学習を利用して高品質な解を学習する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-13T07:56:21Z) - Optimizing Diffusion Models for Joint Trajectory Prediction and Controllable Generation [49.49868273653921]
拡散モデルは、自律運転における共同軌道予測と制御可能な生成を約束する。
最適ガウス拡散(OGD)と推定クリーンマニフォールド(ECM)誘導を導入する。
提案手法は生成過程の合理化を図り,計算オーバーヘッドを低減した実用的な応用を実現する。
論文 参考訳(メタデータ) (2024-08-01T17:59:59Z) - TMPQ-DM: Joint Timestep Reduction and Quantization Precision Selection for Efficient Diffusion Models [40.5153344875351]
我々はTMPQ-DMを導入し、タイムステップの削減と量子化を共同で最適化し、優れた性能・効率のトレードオフを実現する。
時間段階の削減のために、デノナイジング過程の非一様性に合わせた非一様グルーピングスキームを考案する。
量子化の観点では、最終的な生成性能に対するそれぞれの貢献に基づいて、異なる層に異なるビット幅を割り当てる、きめ細かいレイヤーワイズアプローチを採用する。
論文 参考訳(メタデータ) (2024-04-15T07:51:40Z) - M-HOF-Opt: Multi-Objective Hierarchical Output Feedback Optimization via Multiplier Induced Loss Landscape Scheduling [4.499391876093543]
ニューラルワークによってパラメータ化された多くの損失項の多目的最適化のための重み乗算器のオンライン選択に対処する。
本手法は乗算器レスであり,エポックの時間スケールで動作する。
また、既存の多目的ディープラーニング手法の過剰なメモリ要件と重い計算負担を回避する。
論文 参考訳(メタデータ) (2024-03-20T16:38:26Z) - Gaussian Mixture Solvers for Diffusion Models [84.83349474361204]
本稿では,拡散モデルのためのGMSと呼ばれる,SDEに基づく新しい解法について紹介する。
画像生成およびストロークベース合成におけるサンプル品質の観点から,SDEに基づく多くの解法よりも優れる。
論文 参考訳(メタデータ) (2023-11-02T02:05:38Z) - Federated Conditional Stochastic Optimization [110.513884892319]
条件付き最適化は、不変学習タスク、AUPRC、AMLなど、幅広い機械学習タスクで見られる。
本稿では,分散フェデレーション学習のためのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-10-04T01:47:37Z) - AdaDiff: Accelerating Diffusion Models through Step-Wise Adaptive Computation [32.74923906921339]
拡散モデルは多彩で高忠実な画像を生成する上で大きな成功を収めるが、それらの応用は本質的に遅い生成速度によって妨げられる。
本稿では,拡散モデルの生成効率を向上させるために,各サンプリングステップで動的に計算資源を割り当てる適応フレームワークであるAdaDiffを提案する。
論文 参考訳(メタデータ) (2023-09-29T09:10:04Z) - Multi-Agent Deep Reinforcement Learning in Vehicular OCC [14.685237010856953]
我々は車載OCCにおけるスペクトル効率最適化手法を提案する。
我々は最適化問題をマルコフ決定プロセス(MDP)としてモデル化し、オンラインで適用可能なソリューションの利用を可能にする。
提案手法の性能を広範囲なシミュレーションにより検証し,提案手法の様々な変種とランダムな手法との比較を行った。
論文 参考訳(メタデータ) (2022-05-05T14:25:54Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
セキュリティに制約のある最適電力フロー(SCOPF)は、電力システムの基本である。
SCOPF問題におけるAPRのモデル化は、複雑な大規模混合整数プログラムをもたらす。
本稿では,ディープラーニングとロバスト最適化を組み合わせた新しい手法を提案する。
論文 参考訳(メタデータ) (2020-07-14T12:38:21Z) - GACEM: Generalized Autoregressive Cross Entropy Method for Multi-Modal
Black Box Constraint Satisfaction [69.94831587339539]
本稿では,マスク付き自己回帰ニューラルネットワークを用いて解空間上の均一分布をモデル化するクロスエントロピー法(CEM)を提案する。
我々のアルゴリズムは複雑な解空間を表現でき、様々な異なる解領域を追跡できる。
論文 参考訳(メタデータ) (2020-02-17T20:21:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。