論文の概要: SoK: What don't we know? Understanding Security Vulnerabilities in SNARKs
- arxiv url: http://arxiv.org/abs/2402.15293v3
- Date: Wed, 10 Jul 2024 13:45:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-11 21:39:45.909517
- Title: SoK: What don't we know? Understanding Security Vulnerabilities in SNARKs
- Title(参考訳): SoK: SNARKにおけるセキュリティ脆弱性の理解
- Authors: Stefanos Chaliasos, Jens Ernstberger, David Theodore, David Wong, Mohammad Jahanara, Benjamin Livshits,
- Abstract要約: ゼロ知識証明(ZKP)は、プライバシと検証可能性を提供する理論概念から、実用的な実世界の実装まで進化してきた。
SNARK(Succinct Non-Interactive Argument of Knowledge)は、最も重要なイノベーションのひとつ。
本稿では,実生活SNARK実装のエンドツーエンドセキュリティ特性の評価に焦点をあてる。
- 参考スコア(独自算出の注目度): 8.190612719134606
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Zero-knowledge proofs (ZKPs) have evolved from being a theoretical concept providing privacy and verifiability to having practical, real-world implementations, with SNARKs (Succinct Non-Interactive Argument of Knowledge) emerging as one of the most significant innovations. Prior work has mainly focused on designing more efficient SNARK systems and providing security proofs for them. Many think of SNARKs as "just math," implying that what is proven to be correct and secure is correct in practice. In contrast, this paper focuses on assessing end-to-end security properties of real-life SNARK implementations. We start by building foundations with a system model and by establishing threat models and defining adversarial roles for systems that use SNARKs. Our study encompasses an extensive analysis of 141 actual vulnerabilities in SNARK implementations, providing a detailed taxonomy to aid developers and security researchers in understanding the security threats in systems employing SNARKs. Finally, we evaluate existing defense mechanisms and offer recommendations for enhancing the security of SNARK-based systems, paving the way for more robust and reliable implementations in the future.
- Abstract(参考訳): ゼロ知識証明(ZKP)は、プライバシーと検証可能性を提供する理論概念から進化し、SNARK(Succinct Non-Interactive Argument of Knowledge)が最も重要なイノベーションの1つとして登場した。
これまでは主に、より効率的なSNARKシステムの設計とセキュリティ証明の提供に重点を置いてきた。
多くの人はSNARKを「ただの数学」とみなし、実際に正しいと証明されたものが正しいことを示唆している。
これとは対照的に,本研究では,実生活SNARK実装のエンドツーエンドセキュリティ特性の評価に重点を置いている。
まず、システムモデルによる基盤の構築と、脅威モデルを確立し、SNARKを使用するシステムに対する敵の役割を定義することから始めます。
本研究は,SNARK実装における141の実際の脆弱性を広範囲に分析し,SNARKを用いたシステムのセキュリティ脅威を理解する上で,開発者やセキュリティ研究者を支援するための詳細な分類法を提供する。
最後に、我々は既存の防衛機構を評価し、SNARKベースのシステムのセキュリティを強化するための勧告を提供し、将来より堅牢で信頼性の高い実装を実現する。
関連論文リスト
- In-Context Experience Replay Facilitates Safety Red-Teaming of Text-to-Image Diffusion Models [97.82118821263825]
テキスト・ツー・イメージ(T2I)モデルは目覚ましい進歩を見せているが、有害なコンテンツを生成する可能性はまだMLコミュニティにとって重要な関心事である。
ICERは,解釈可能かつ意味論的に意味のある重要なプロンプトを生成する新しい赤チームフレームワークである。
我々の研究は、より堅牢な安全メカニズムをT2Iシステムで開発するための重要な洞察を提供する。
論文 参考訳(メタデータ) (2024-11-25T04:17:24Z) - SoK: Unifying Cybersecurity and Cybersafety of Multimodal Foundation Models with an Information Theory Approach [58.93030774141753]
MFM(Multimodal foundation model)は、人工知能の大幅な進歩を表す。
本稿では,マルチモーダル学習におけるサイバーセーフティとサイバーセキュリティを概念化する。
我々は、これらの概念をMFMに統一し、重要な脅威を特定するための総合的知識体系化(SoK)を提案する。
論文 参考訳(メタデータ) (2024-11-17T23:06:20Z) - Sok: Comprehensive Security Overview, Challenges, and Future Directions of Voice-Controlled Systems [10.86045604075024]
Voice Control Systemsをスマートデバイスに統合することで、セキュリティの重要性が強調される。
現在の研究では、VCSの脆弱性が多数発見され、ユーザのプライバシとセキュリティに重大なリスクが提示されている。
本稿では,VCSの階層的モデル構造を導入し,既存の文献を体系的に分類・分析するための新しいレンズを提供する。
我々は,その技術的原則に基づいて攻撃を分類し,その方法,目標,ベクトル,行動など,さまざまな属性を徹底的に評価する。
論文 参考訳(メタデータ) (2024-05-27T12:18:46Z) - Dynamic Vulnerability Criticality Calculator for Industrial Control Systems [0.0]
本稿では,動的脆弱性臨界計算機を提案する革新的な手法を提案する。
本手法は, 環境トポロジの分析と, 展開されたセキュリティ機構の有効性を包含する。
本手法では,これらの要因を総合的なファジィ認知マップモデルに統合し,攻撃経路を組み込んで全体の脆弱性スコアを総合的に評価する。
論文 参考訳(メタデータ) (2024-03-20T09:48:47Z) - Securing Federated Learning with Control-Flow Attestation: A Novel Framework for Enhanced Integrity and Resilience against Adversarial Attacks [2.28438857884398]
分散機械学習パラダイムとしてのフェデレートラーニング(FL)は、新たなサイバーセキュリティ課題を導入した。
本研究では,従来サイバーセキュリティに用いられてきた制御フロー(CFA)機構にインスパイアされた,革新的なセキュリティフレームワークを提案する。
我々は、ネットワーク全体にわたるモデル更新の完全性を認証し、検証し、モデル中毒や敵対的干渉に関連するリスクを効果的に軽減する。
論文 参考訳(メタデータ) (2024-03-15T04:03:34Z) - The Art of Defending: A Systematic Evaluation and Analysis of LLM
Defense Strategies on Safety and Over-Defensiveness [56.174255970895466]
大規模言語モデル(LLM)は、自然言語処理アプリケーションにおいて、ますます重要な役割を担っている。
本稿では,SODE(Safety and Over-Defensiveness Evaluation)ベンチマークを提案する。
論文 参考訳(メタデータ) (2023-12-30T17:37:06Z) - Approximate Model-Based Shielding for Safe Reinforcement Learning [83.55437924143615]
本稿では,学習したRLポリシーの性能を検証するための,原則的ルックアヘッド遮蔽アルゴリズムを提案する。
我々のアルゴリズムは他の遮蔽手法と異なり、システムの安全性関連力学の事前知識を必要としない。
我々は,国家依存型安全ラベルを持つアタリゲームにおいて,他の安全を意識したアプローチよりも優れた性能を示す。
論文 参考訳(メタデータ) (2023-07-27T15:19:45Z) - When Authentication Is Not Enough: On the Security of Behavioral-Based Driver Authentication Systems [53.2306792009435]
我々はランダムフォレストとリカレントニューラルネットワークアーキテクチャに基づく2つの軽量ドライバ認証システムを開発した。
我々は,SMARTCANとGANCANという2つの新しいエスケープアタックを開発することで,これらのシステムに対する攻撃を最初に提案する。
コントリビューションを通じて、これらのシステムを安全に採用する実践者を支援し、車の盗難を軽減し、ドライバーのセキュリティを高める。
論文 参考訳(メタデータ) (2023-06-09T14:33:26Z) - Constraints Satisfiability Driven Reinforcement Learning for Autonomous
Cyber Defense [7.321728608775741]
強化学習(RL)の防御政策の最適化と検証を目的とした新しいハイブリッド自律エージェントアーキテクチャを紹介します。
我々は、安全かつ効果的な行動に向けてRL決定を操るために、制約検証(SMT(Satisfiability modulo theory))を用いる。
シミュレーションCPS環境における提案手法の評価は,エージェントが最適方針を迅速に学習し,99%のケースで多種多様な攻撃戦略を破ることを示す。
論文 参考訳(メタデータ) (2021-04-19T01:08:30Z) - SoK: A Modularized Approach to Study the Security of Automatic Speech
Recognition Systems [13.553395767144284]
我々は、ASRセキュリティのための知識の体系化と、モジュール化されたワークフローに基づく既存の作業の包括的分類を提供する。
本稿では,この領域の研究を,画像認識システム(irs)におけるセキュリティに関する研究と一致させる。
これらの類似性により、IRSが提案する攻撃と防衛ソリューションのスペクトルに基づいて、ASRセキュリティにおける既存の文献を体系的に研究することができる。
対照的に、それらの違い、特にIRSと比較してASRの複雑さは、ASRセキュリティのユニークな課題と機会を学ぶのに役立ちます。
論文 参考訳(メタデータ) (2021-03-19T06:24:04Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
大きな可能性にもかかわらず、セキュリティにおける機械学習は、パフォーマンスを損なう微妙な落とし穴を引き起こす傾向がある。
我々は,学習ベースのセキュリティシステムの設計,実装,評価において共通の落とし穴を特定する。
我々は,落とし穴の回避や軽減を支援するために,研究者を支援するための実用的な勧告を提案する。
論文 参考訳(メタデータ) (2020-10-19T13:09:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。