論文の概要: Progressive-Proximity Bit-Flipping for Decoding Surface Codes
- arxiv url: http://arxiv.org/abs/2402.15924v1
- Date: Sat, 24 Feb 2024 22:38:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-27 16:20:47.290344
- Title: Progressive-Proximity Bit-Flipping for Decoding Surface Codes
- Title(参考訳): 表面符号復号のためのプログレッシブプロクシミティビットフリップ
- Authors: Michele Pacenti, Mark F. Flanagan, Dimitris Chytas, Bane Vasic
- Abstract要約: トリックやサーフェスコードのようなトポロジカル量子コードは、ハードウェア実装の優れた候補である。
既存のデコーダは、計算複雑性の低いような要求を満たすのに不足することが多い。
トリックおよび表面符号に適した新しいビットフリップ(BF)デコーダを提案する。
- 参考スコア(独自算出の注目度): 9.801253635315636
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Topological quantum codes, such as toric and surface codes, are excellent
candidates for hardware implementation due to their robustness against errors
and their local interactions between qubits. However, decoding these codes
efficiently remains a challenge: existing decoders often fall short of meeting
requirements such as having low computational complexity (ideally linear in the
code's blocklength), low decoding latency, and low power consumption. In this
paper we propose a novel bit-flipping (BF) decoder tailored for toric and
surface codes. We introduce the proximity vector as a heuristic metric for
flipping bits, and we develop a new subroutine for correcting a particular
class of harmful degenerate errors. Our algorithm achieves linear complexity
growth and it can be efficiently implemented as it only involves simple
operations such as bit-wise additions, quasi-cyclic permutations and
vector-matrix multiplications. The proposed decoder shows a decoding threshold
of 7.5% for the 2D toric code and 7% for the rotated planar code over the
binary symmetric channel.
- Abstract(参考訳): toricやsurface codesのようなトポロジカル量子コードは、エラーに対する堅牢性とキュービット間の局所的な相互作用のため、ハードウェア実装の優れた候補である。
既存のデコーダは、計算複雑性の低い(コードのブロック長が理想的に線形である)、デコード遅延の低い、消費電力の低いといった要件を満たしていないことが多い。
本稿では, toric および surface code 用に調整した新しいビットフリッピング(bf)デコーダを提案する。
ビットを反転するためのヒューリスティックメトリックとして近接ベクトルを導入し、有害な縮退誤差の特定のクラスを修正するための新しいサブルーチンを開発した。
我々のアルゴリズムは線形複雑性の増大を達成し、ビットワイド加算、準巡回置換、ベクトル行列乗法といった単純な演算のみを含むため、効率よく実装できる。
提案するデコーダは,2次元トーリック符号で7.5%,回転平面符号で7%の復号閾値を示す。
関連論文リスト
- Generalizing the matching decoder for the Chamon code [1.8416014644193066]
チャモン符号として知られる3次元,非CSS,低密度のパリティチェックコードに対して,マッチングデコーダを実装した。
一般化された整合デコーダは、整合前に信念伝播ステップによって拡張され、偏極雑音に対するしきい値が10.5%となる。
論文 参考訳(メタデータ) (2024-11-05T19:00:12Z) - Accelerating Error Correction Code Transformers [56.75773430667148]
本稿では,トランスを用いたデコーダの高速化手法を提案する。
最新のハードウェアでは、90%の圧縮比を実現し、算術演算エネルギー消費を少なくとも224倍削減する。
論文 参考訳(メタデータ) (2024-10-08T11:07:55Z) - Collective Bit Flipping-Based Decoding of Quantum LDPC Codes [0.6554326244334866]
可変次数-3(dv-3)QLDPC符号の繰り返し復号化による誤り訂正性能と復号遅延の両方を改善した。
我々の復号方式は、ビットフリップ(BF)デコーディングの修正版、すなわち2ビットビットフリップ(TBF)デコーディングを適用することに基づいている。
論文 参考訳(メタデータ) (2024-06-24T18:51:48Z) - Learning Linear Block Error Correction Codes [62.25533750469467]
本稿では,バイナリ線形ブロック符号の統一エンコーダデコーダトレーニングを初めて提案する。
また,コード勾配の効率的なバックプロパゲーションのために,自己注意マスキングを行うトランスフォーマーモデルを提案する。
論文 参考訳(メタデータ) (2024-05-07T06:47:12Z) - Measurement-free fault-tolerant logical zero-state encoding of the
distance-three nine-qubit surface code in a one-dimensional qubit array [0.0]
距離3, 9量子曲面符号の効率的な符号化法を提案し, その耐故障性を示す。
超伝導量子コンピュータを用いた表面符号の論理零状態符号化を実験により実証した。
我々は,この大規模コードのフォールトトレラントな符号化が適切なエラー検出によって達成できることを数値的に示す。
論文 参考訳(メタデータ) (2023-03-30T08:13:56Z) - Neural Belief Propagation Decoding of Quantum LDPC Codes Using
Overcomplete Check Matrices [60.02503434201552]
元のチェック行列における行の線形結合から生成された冗長な行を持つチェック行列に基づいてQLDPC符号を復号する。
このアプローチは、非常に低い復号遅延の利点を付加して、復号性能を著しく向上させる。
論文 参考訳(メタデータ) (2022-12-20T13:41:27Z) - Graph Neural Networks for Channel Decoding [71.15576353630667]
低密度パリティチェック(LDPC)やBCH符号など、様々な符号化方式の競合復号性能を示す。
ニューラルネットワーク(NN)は、与えられたグラフ上で一般化されたメッセージパッシングアルゴリズムを学習する。
提案するデコーダを,従来のチャネル復号法および最近のディープラーニングに基づく結果と比較した。
論文 参考訳(メタデータ) (2022-07-29T15:29:18Z) - Conservation laws and quantum error correction: towards a generalised
matching decoder [2.1756081703276]
原型量子低密度パリティチェック符号である表面符号の復号アルゴリズムについて検討する。
デコーダは、表面符号安定化素子間の物質化された対称性によって生じる基盤構造を利用する。
本研究では,特定の特性を持つ符号に対して,最小重み付き完全整合デコーダを構築する方式を提案する。
論文 参考訳(メタデータ) (2022-07-13T18:00:00Z) - Improved decoding of circuit noise and fragile boundaries of tailored
surface codes [61.411482146110984]
高速かつ高精度なデコーダを導入し、幅広い種類の量子誤り訂正符号で使用することができる。
我々のデコーダは、信仰マッチングと信念フィンドと呼ばれ、すべてのノイズ情報を活用し、QECの高精度なデモを解き放つ。
このデコーダは, 標準の正方形曲面符号に対して, 整形曲面符号において, より高いしきい値と低い量子ビットオーバーヘッドをもたらすことがわかった。
論文 参考訳(メタデータ) (2022-03-09T18:48:54Z) - Combining hard and soft decoders for hypergraph product codes [0.3326320568999944]
ハイパーグラフ製品コードは、スモールセットフリップ (SSF) と呼ばれる線形時間デコーダを備えた定数レート量子低密度パリティチェック (LDPC) 符号である。
このデコーダは、実際には準最適性能を示し、非常に大きなエラー訂正符号を必要とする。
本稿では,信念伝搬(BP)アルゴリズムとSFデコーダを組み合わせたハイブリッドデコーダを提案する。
論文 参考訳(メタデータ) (2020-04-23T14:48:05Z) - Pruning Neural Belief Propagation Decoders [77.237958592189]
本稿では,機械学習を用いたBPデコードに対して,過剰完全パリティチェック行列を調整する手法を提案する。
我々は,デコーダの複雑さを低減しつつ,0.27dB,1.5dBのML性能を実現する。
論文 参考訳(メタデータ) (2020-01-21T12:05:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。