論文の概要: From RAGs to riches: Utilizing large language models to write documents for clinical trials
- arxiv url: http://arxiv.org/abs/2402.16406v2
- Date: Sat, 01 Mar 2025 14:22:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-04 17:04:19.184079
- Title: From RAGs to riches: Utilizing large language models to write documents for clinical trials
- Title(参考訳): RAGから富へ:大規模言語モデルを用いた臨床試験のための文書作成
- Authors: Nigel Markey, Ilyass El-Mansouri, Gaetan Rensonnet, Casper van Langen, Christoph Meier,
- Abstract要約: この記事は、現在ジャーナルのウェブサイトで公開されている: https://journals.sagepub.com/doi177/174077452520806。
公開リンク: https://pubmed.ncbi.nlm.nih.gov/40013826/
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This manuscript has now been published: - Link to article on journal website: https://journals.sagepub.com/doi/10.1177/17407745251320806 - Pubmed link: https://pubmed.ncbi.nlm.nih.gov/40013826/
- Abstract(参考訳): https://journals.sagepub.com/doi/10.1177/17407745251320806 - Pubmed link: https://pubmed.ncbi.nlm.nih.gov/40013826/
関連論文リスト
- CliMedBench: A Large-Scale Chinese Benchmark for Evaluating Medical Large Language Models in Clinical Scenarios [50.032101237019205]
CliMedBenchは、14のエキスパートによるコア臨床シナリオを備えた総合的なベンチマークである。
このベンチマークの信頼性はいくつかの点で確認されている。
論文 参考訳(メタデータ) (2024-10-04T15:15:36Z) - MEDIC: Towards a Comprehensive Framework for Evaluating LLMs in Clinical Applications [2.838746648891565]
臨床能力の5つの重要な側面にまたがって,大規模言語モデル(LLM)を評価するフレームワークであるMEDICを紹介する。
医療質問応答,安全性,要約,メモ生成,その他のタスクにおいて,MDDICを用いてLCMを評価する。
その結果, モデルサイズ, ベースライン, 医療用微調整モデル間の性能差が示され, 特定のモデル強度を必要とするアプリケーションに対して, モデル選択に影響を及ぼすことがわかった。
論文 参考訳(メタデータ) (2024-09-11T14:44:51Z) - XAI4LLM. Let Machine Learning Models and LLMs Collaborate for Enhanced In-Context Learning in Healthcare [16.79952669254101]
多層構造プロンプトを用いたゼロショット/ファウショットインコンテキスト学習(ICL)のための新しい手法を開発した。
また、ユーザと大規模言語モデル(LLM)間の2つのコミュニケーションスタイルの有効性についても検討する。
本研究は,性別バイアスや偽陰性率などの診断精度とリスク要因を系統的に評価する。
論文 参考訳(メタデータ) (2024-05-10T06:52:44Z) - Large Language Models in the Clinic: A Comprehensive Benchmark [63.21278434331952]
診療所の大規模言語モデル(LLM)をよりよく理解するためのベンチマークであるClimateBenchを構築した。
まず、さまざまな臨床言語の生成、理解、推論タスクを含む11の既存のデータセットを収集します。
次に,現実の実践において複雑だが一般的である6つの新しいデータセットと臨床タスクを構築した。
ゼロショット設定と少数ショット設定の両方で、20個のLDMを広範囲に評価する。
論文 参考訳(メタデータ) (2024-04-25T15:51:06Z) - A Dataset and Benchmark for Hospital Course Summarization with Adapted Large Language Models [4.091402760759184]
大規模言語モデル(LLM)は、現実世界のタスクを自動化する際、顕著な能力を示しているが、医療応用の能力は示されていない。
臨床ノートと短い病院コースをカプセル化したMIMIC-IV-BHC(MIMIC-IV-BHC)を導入した。
臨床ノートを入力として,3つのオープンソースLSMと2つの独自LSMに対して,プロンプトベース(文脈内学習)と微調整ベースの適応戦略を適用した。
論文 参考訳(メタデータ) (2024-03-08T23:17:55Z) - Large Language Model Distilling Medication Recommendation Model [61.89754499292561]
大規模言語モデル(LLM)の強力な意味理解と入力非依存特性を利用する。
本研究は, LLMを用いて既存の薬剤推奨手法を変換することを目的としている。
これを軽減するため,LLMの習熟度をよりコンパクトなモデルに伝達する機能レベルの知識蒸留技術を開発した。
論文 参考訳(メタデータ) (2024-02-05T08:25:22Z) - LongHealth: A Question Answering Benchmark with Long Clinical Documents [36.05587855811346]
各種疾患20例を対象とし,LongHealthベンチマークを報告する。
このベンチマークは、情報抽出、否定、ソートという3つのカテゴリで400の多重選択の質問でLSMに挑戦する。
また,OpenAIのプロプライエタリかつコスト効率のよいGPT-3.5 Turboも比較検討した。
論文 参考訳(メタデータ) (2024-01-25T19:57:00Z) - Adapted Large Language Models Can Outperform Medical Experts in Clinical Text Summarization [8.456700096020601]
大規模言語モデル (LLM) は自然言語処理 (NLP) において有望であるが, 様々な臨床要約タスクにおける有効性は証明されていない。
本研究では,4つの臨床要約課題にまたがる8つのLCMに適応法を適用した。
10名の医師による臨床読影者を対象に, 要約, 完全性, 正当性, 簡潔性を評価した。ほとんどの場合, ベスト適応LSMの要約は, 医用専門家の要約と比べ, 同等(45%), 上等(36%)である。
論文 参考訳(メタデータ) (2023-09-14T05:15:01Z) - CliniDigest: A Case Study in Large Language Model Based Large-Scale
Summarization of Clinical Trial Descriptions [58.720142291102135]
2022年には、毎日100件以上の臨床試験がCricerTrials.govに提出された。
CliniDigestは、私たちの知る限り、臨床試験のリアルタイム、真実、そして包括的な要約を提供するための最初のツールです。
それぞれのフィールドに対して、CliniDigestは$mu=153, igma=69$の要約を生成し、それぞれが$mu=54%, sigma=30%のソースを使用する。
論文 参考訳(メタデータ) (2023-07-26T21:49:14Z) - Self-Verification Improves Few-Shot Clinical Information Extraction [73.6905567014859]
大規模言語モデル (LLMs) は、数発のテキスト内学習を通じて臨床キュレーションを加速する可能性を示している。
正確性や解釈可能性に関する問題、特に健康のようなミッションクリティカルな領域ではまだ苦戦している。
本稿では,自己検証を用いた汎用的な緩和フレームワークについて検討する。このフレームワークはLLMを利用して,自己抽出のための証明を提供し,その出力をチェックする。
論文 参考訳(メタデータ) (2023-05-30T22:05:11Z) - HuatuoGPT, towards Taming Language Model to Be a Doctor [67.96794664218318]
HuatuoGPTは医療相談のための大規模言語モデル(LLM)である。
我々は,ChatGPTのテクティット蒸留データと,教師付き微調整段階の医師のテクティトゥルワールドデータの両方を活用する。
論文 参考訳(メタデータ) (2023-05-24T11:56:01Z) - Development and validation of a natural language processing algorithm to
pseudonymize documents in the context of a clinical data warehouse [53.797797404164946]
この研究は、この領域でツールやリソースを共有する際に直面する困難を浮き彫りにしている。
臨床文献のコーパスを12種類に分類した。
私たちは、ディープラーニングモデルと手動ルールの結果をマージして、ハイブリッドシステムを構築します。
論文 参考訳(メタデータ) (2023-03-23T17:17:46Z) - Retrieval-Augmented and Knowledge-Grounded Language Models for Faithful Clinical Medicine [68.7814360102644]
本稿では,Re$3$Writer法を提案する。
本手法が患者の退院指示生成に有効であることを示す。
論文 参考訳(メタデータ) (2022-10-23T16:34:39Z) - ICDBigBird: A Contextual Embedding Model for ICD Code Classification [71.58299917476195]
文脈単語埋め込みモデルは、複数のNLPタスクにおいて最先端の結果を得た。
ICDBigBirdは、Graph Convolutional Network(GCN)を統合するBigBirdベースのモデルである。
ICD分類作業におけるBigBirdモデルの有効性を実世界の臨床データセットで実証した。
論文 参考訳(メタデータ) (2022-04-21T20:59:56Z) - Few-Shot Cross-lingual Transfer for Coarse-grained De-identification of
Code-Mixed Clinical Texts [56.72488923420374]
事前学習型言語モデル (LM) は低リソース環境下での言語間移動に大きな可能性を示している。
脳卒中におけるコードミキシング(スペイン・カタラン)臨床ノートの低リソース・実世界の課題を解決するために,NER (name recognition) のためのLMの多言語間転写特性を示す。
論文 参考訳(メタデータ) (2022-04-10T21:46:52Z) - Neural language models for text classification in evidence-based
medicine [3.5770353345663044]
エビデンス・ベース・メディカル(EBM)は、毎日発行される大量の研究論文とプレプリントのために、これまでになく挑戦されている。
本稿では,学術論文を分類し,エピステミコスを支援するための応用研究プロジェクトの結果を報告する。
我々はいくつかの手法を検証し、XLNetニューラルネットワークモデルに基づく最良の手法は、F1スコアの平均で現在のアプローチを93%改善する。
論文 参考訳(メタデータ) (2020-12-01T15:53:44Z) - A Multilingual Neural Machine Translation Model for Biomedical Data [84.17747489525794]
生物医学領域におけるテキストの翻訳に使用できる多言語ニューラルマシン翻訳モデルをリリースする。
このモデルは5つの言語(フランス語、ドイツ語、イタリア語、韓国語、スペイン語)から英語に翻訳できる。
ドメインタグを使用して、大量のジェネリックおよびバイオメディカルデータをトレーニングする。
論文 参考訳(メタデータ) (2020-08-06T21:26:43Z) - GGPONC: A Corpus of German Medical Text with Rich Metadata Based on
Clinical Practice Guidelines [4.370297546680015]
GGPONCは、腫瘍診療ガイドラインに基づく、自由に配布可能なドイツ語コーパスである。
GGPONCは、大きな医療分野における様々な状況をカバーするドイツ語の最初のコーパスである。
既存の医療情報抽出パイプラインをドイツ語テキストに適用し,評価することにより,医学的言語を用いた比較を行うことができる。
論文 参考訳(メタデータ) (2020-07-13T14:25:49Z) - Evidence Inference 2.0: More Data, Better Models [22.53884716373888]
Evidence Inferenceデータセットは、この目的に向けた研究を促進するために最近リリースされた。
本稿では、エビデンス推論データセットを25%拡張するための追加アノテーションを収集する。
新しいベースラインと評価のための更新されたコーパス、ドキュメント、コードはhttp://evidence-inference.ebm-nlp.com/で公開されている。
論文 参考訳(メタデータ) (2020-05-08T17:16:35Z) - CLARA: Clinical Report Auto-completion [56.206459591367405]
CLARA(CLinicit Al It Report It Auto-Completion)は、医師のアンカーワードと部分的に完成した文に基づいて、文章でレポートを生成するインタラクティブな方法である。
実験では,X線で0.393 CIDEr,0.248 BLEU-4,脳波で0.482 CIDEr,0.491 BLEU-4を得た。
論文 参考訳(メタデータ) (2020-02-26T18:45:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。