論文の概要: From RAGs to riches: Utilizing large language models to write documents for clinical trials
- arxiv url: http://arxiv.org/abs/2402.16406v2
- Date: Sat, 01 Mar 2025 14:22:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-04 16:10:27.518658
- Title: From RAGs to riches: Utilizing large language models to write documents for clinical trials
- Title(参考訳): RAGから富へ:大規模言語モデルを用いた臨床試験のための文書作成
- Authors: Nigel Markey, Ilyass El-Mansouri, Gaetan Rensonnet, Casper van Langen, Christoph Meier,
- Abstract要約: この記事は、現在ジャーナルのウェブサイトで公開されている: https://journals.sagepub.com/doi177/174077452520806。
公開リンク: https://pubmed.ncbi.nlm.nih.gov/40013826/
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This manuscript has now been published: - Link to article on journal website: https://journals.sagepub.com/doi/10.1177/17407745251320806 - Pubmed link: https://pubmed.ncbi.nlm.nih.gov/40013826/
- Abstract(参考訳): https://journals.sagepub.com/doi/10.1177/17407745251320806 - Pubmed link: https://pubmed.ncbi.nlm.nih.gov/40013826/
関連論文リスト
- Assessing the Limitations of Large Language Models in Clinical Fact Decomposition [3.919419934122265]
FactEHRは,3つの病院システムから4つの病院システムにまたがる2,168件の臨床記録について,フルドキュメントの事実分解からなるデータセットである。
臨床医によるレビューを含め,本評価では,4種類のLCMにおいて,事実分解の質に有意な変動がみられた。
その結果、臨床テキストの事実検証を支援するためのLCM機能の改善の必要性が浮き彫りになった。
論文 参考訳(メタデータ) (2024-12-17T00:07:05Z) - CliMedBench: A Large-Scale Chinese Benchmark for Evaluating Medical Large Language Models in Clinical Scenarios [50.032101237019205]
CliMedBenchは、14のエキスパートによるコア臨床シナリオを備えた総合的なベンチマークである。
このベンチマークの信頼性はいくつかの点で確認されている。
論文 参考訳(メタデータ) (2024-10-04T15:15:36Z) - MEDIC: Towards a Comprehensive Framework for Evaluating LLMs in Clinical Applications [2.838746648891565]
臨床能力の5つの重要な側面にまたがって,大規模言語モデル(LLM)を評価するフレームワークであるMEDICを紹介する。
医療質問応答,安全性,要約,メモ生成,その他のタスクにおいて,MDDICを用いてLCMを評価する。
その結果, モデルサイズ, ベースライン, 医療用微調整モデル間の性能差が示され, 特定のモデル強度を必要とするアプリケーションに対して, モデル選択に影響を及ぼすことがわかった。
論文 参考訳(メタデータ) (2024-09-11T14:44:51Z) - XAI4LLM. Let Machine Learning Models and LLMs Collaborate for Enhanced In-Context Learning in Healthcare [16.79952669254101]
多層構造プロンプトを用いたゼロショット/ファウショットインコンテキスト学習(ICL)のための新しい手法を開発した。
また、ユーザと大規模言語モデル(LLM)間の2つのコミュニケーションスタイルの有効性についても検討する。
本研究は,性別バイアスや偽陰性率などの診断精度とリスク要因を系統的に評価する。
論文 参考訳(メタデータ) (2024-05-10T06:52:44Z) - Large Language Models in the Clinic: A Comprehensive Benchmark [63.21278434331952]
診療所の大規模言語モデル(LLM)をよりよく理解するためのベンチマークであるClimateBenchを構築した。
まず、さまざまな臨床言語の生成、理解、推論タスクを含む11の既存のデータセットを収集します。
次に,現実の実践において複雑だが一般的である6つの新しいデータセットと臨床タスクを構築した。
ゼロショット設定と少数ショット設定の両方で、20個のLDMを広範囲に評価する。
論文 参考訳(メタデータ) (2024-04-25T15:51:06Z) - Large Language Model Distilling Medication Recommendation Model [58.94186280631342]
大規模言語モデル(LLM)の強力な意味理解と入力非依存特性を利用する。
本研究は, LLMを用いて既存の薬剤推奨手法を変換することを目的としている。
これを軽減するため,LLMの習熟度をよりコンパクトなモデルに伝達する機能レベルの知識蒸留技術を開発した。
論文 参考訳(メタデータ) (2024-02-05T08:25:22Z) - LongHealth: A Question Answering Benchmark with Long Clinical Documents [36.05587855811346]
各種疾患20例を対象とし,LongHealthベンチマークを報告する。
このベンチマークは、情報抽出、否定、ソートという3つのカテゴリで400の多重選択の質問でLSMに挑戦する。
また,OpenAIのプロプライエタリかつコスト効率のよいGPT-3.5 Turboも比較検討した。
論文 参考訳(メタデータ) (2024-01-25T19:57:00Z) - Adapted Large Language Models Can Outperform Medical Experts in Clinical Text Summarization [8.456700096020601]
大規模言語モデル (LLM) は自然言語処理 (NLP) において有望であるが, 様々な臨床要約タスクにおける有効性は証明されていない。
本研究では,4つの臨床要約課題にまたがる8つのLCMに適応法を適用した。
10名の医師による臨床読影者を対象に, 要約, 完全性, 正当性, 簡潔性を評価した。ほとんどの場合, ベスト適応LSMの要約は, 医用専門家の要約と比べ, 同等(45%), 上等(36%)である。
論文 参考訳(メタデータ) (2023-09-14T05:15:01Z) - Self-Verification Improves Few-Shot Clinical Information Extraction [73.6905567014859]
大規模言語モデル (LLMs) は、数発のテキスト内学習を通じて臨床キュレーションを加速する可能性を示している。
正確性や解釈可能性に関する問題、特に健康のようなミッションクリティカルな領域ではまだ苦戦している。
本稿では,自己検証を用いた汎用的な緩和フレームワークについて検討する。このフレームワークはLLMを利用して,自己抽出のための証明を提供し,その出力をチェックする。
論文 参考訳(メタデータ) (2023-05-30T22:05:11Z) - Development and validation of a natural language processing algorithm to
pseudonymize documents in the context of a clinical data warehouse [53.797797404164946]
この研究は、この領域でツールやリソースを共有する際に直面する困難を浮き彫りにしている。
臨床文献のコーパスを12種類に分類した。
私たちは、ディープラーニングモデルと手動ルールの結果をマージして、ハイブリッドシステムを構築します。
論文 参考訳(メタデータ) (2023-03-23T17:17:46Z) - Retrieval-Augmented and Knowledge-Grounded Language Models for Faithful Clinical Medicine [68.7814360102644]
本稿では,Re$3$Writer法を提案する。
本手法が患者の退院指示生成に有効であることを示す。
論文 参考訳(メタデータ) (2022-10-23T16:34:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。