Integer Programming Using A Single Atom
- URL: http://arxiv.org/abs/2402.16541v3
- Date: Tue, 23 Jul 2024 10:27:14 GMT
- Title: Integer Programming Using A Single Atom
- Authors: Kapil Goswami, Peter Schmelcher, Rick Mukherjee,
- Abstract summary: We develop an algorithm that maps and solves an IP problem in its original form to any quantum system.
The optimal solution is found within a few microseconds for IP problems with up to eight variables and four constraints.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Integer programming (IP), as the name suggests is an integer-variable-based approach commonly used to formulate real-world optimization problems with constraints. Currently, quantum algorithms reformulate the IP into an unconstrained form through the use of binary variables, which is an indirect and resource-consuming way of solving it. We develop an algorithm that maps and solves an IP problem in its original form to any quantum system possessing a large number of accessible internal degrees of freedom that are controlled with sufficient accuracy. This work leverages the principle of superposition to solve the optimization problem. Using a single Rydberg atom as an example, we associate the integer values to electronic states belonging to different manifolds and implement a selective superposition of different states to solve the full IP problem. The optimal solution is found within a few microseconds for prototypical IP problems with up to eight variables and four constraints. This also includes non-linear IP problems, which are usually harder to solve with classical algorithms when compared to their linear counterparts. Our algorithm for solving IP is benchmarked by a well-known classical algorithm (branch and bound) in terms of the number of steps needed for convergence to the solution. This approach carries the potential to improve the solutions obtained for larger-size problems using hybrid quantum-classical algorithms.
Related papers
- The Differentiable Feasibility Pump [49.55771920271201]
This paper shows that the traditional feasibility pump and many of its follow-ups can be seen as gradient-descent algorithms with specific parameters.
A central aspect of this reinterpretation is observing that the traditional algorithm differentiates the solution of the linear relaxation with respect to its cost.
arXiv Detail & Related papers (2024-11-05T22:26:51Z) - Sum-of-Squares inspired Quantum Metaheuristic for Polynomial Optimization with the Hadamard Test and Approximate Amplitude Constraints [76.53316706600717]
Recently proposed quantum algorithm arXiv:2206.14999 is based on semidefinite programming (SDP)
We generalize the SDP-inspired quantum algorithm to sum-of-squares.
Our results show that our algorithm is suitable for large problems and approximate the best known classicals.
arXiv Detail & Related papers (2024-08-14T19:04:13Z) - Solving The Travelling Salesman Problem Using A Single Qubit [0.0]
The travelling salesman problem (TSP) is a popular NP-hard-combinatorial optimization problem.
We present an algorithm that solves an arbitrary TSP using a single qubit by invoking the principle of quantum parallelism.
The underlying framework of our algorithm is a quantum version of the classical Brachistochrone approach.
arXiv Detail & Related papers (2024-07-24T12:06:37Z) - Quantum algorithms for Hopcroft's problem [45.45456673484445]
We study quantum algorithms for Hopcroft's problem which is a fundamental problem in computational geometry.
The classical complexity of this problem is well-studied, with the best known algorithm running in $O(n4/3)$ time.
Our results are two different quantum algorithms with time complexity $widetilde O(n5/6)$.
arXiv Detail & Related papers (2024-05-02T10:29:06Z) - Non-variational Quantum Combinatorial Optimisation [3.6538093004443155]
This paper introduces a non-variational quantum algorithm designed to solve a wide range of optimisation problems.
The algorithm's versatility is demonstrated through its application to various problems.
For each problem instance, the algorithm finds a globally optimal solution with a small number of iterations.
arXiv Detail & Related papers (2024-04-04T02:36:24Z) - Improving the convergence of an iterative algorithm for solving arbitrary linear equation systems using classical or quantum binary optimization [39.58317527488534]
We propose a novel method for solving linear systems.
We transform the linear system into a binary optimization problem, drawing inspiration from the geometry of the original problem.
We demonstrate that by leveraging partial knowledge of the problem's intrinsic geometry, we can decompose the original problem into smaller, independent sub-problems.
arXiv Detail & Related papers (2023-09-18T16:51:03Z) - Efficient quantum linear solver algorithm with detailed running costs [0.0]
We introduce a quantum linear solver algorithm combining ideasdiabatic quantum computing with filtering techniques based on quantum signal processing.
Our protocol reduces the cost of quantum linear solvers over state-of-the-art close to an order of magnitude for early implementations.
arXiv Detail & Related papers (2023-05-19T00:07:32Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
We study the problem of designing worst-case to average-case reductions for quantum algorithms.
We provide an explicit and efficient transformation of quantum algorithms that are only correct on a small fraction of their inputs into ones that are correct on all inputs.
arXiv Detail & Related papers (2022-12-06T22:01:49Z) - Ising formulation of integer optimization problems for utilizing quantum
annealing in iterative improvement strategy [1.14219428942199]
We propose an Ising formulation of integer optimization problems to utilize quantum annealing in the iterative improvement strategy.
We analytically show that a first-order phase transition is successfully avoided for a fully connected ferro Potts model if the overlap between a ground state and a candidate solution exceeds a threshold.
arXiv Detail & Related papers (2022-11-08T02:12:49Z) - Lower Bounds and Optimal Algorithms for Smooth and Strongly Convex
Decentralized Optimization Over Time-Varying Networks [79.16773494166644]
We consider the task of minimizing the sum of smooth and strongly convex functions stored in a decentralized manner across the nodes of a communication network.
We design two optimal algorithms that attain these lower bounds.
We corroborate the theoretical efficiency of these algorithms by performing an experimental comparison with existing state-of-the-art methods.
arXiv Detail & Related papers (2021-06-08T15:54:44Z) - Solving Quadratic Unconstrained Binary Optimization with
divide-and-conquer and quantum algorithms [0.0]
We apply the divide-and-conquer approach to reduce the original problem to a collection of smaller problems.
This technique can be applied to any QUBO instance and leads to either an all-classical or a hybrid quantum-classical approach.
arXiv Detail & Related papers (2021-01-19T19:00:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.