GROUNDHOG: Grounding Large Language Models to Holistic Segmentation
- URL: http://arxiv.org/abs/2402.16846v2
- Date: Tue, 16 Apr 2024 17:59:53 GMT
- Title: GROUNDHOG: Grounding Large Language Models to Holistic Segmentation
- Authors: Yichi Zhang, Ziqiao Ma, Xiaofeng Gao, Suhaila Shakiah, Qiaozi Gao, Joyce Chai,
- Abstract summary: We introduce GROUNDHOG, an MLLM developed by grounding Large Language Models to holistic segmentation.
GROUNDHOG incorporates a masked feature extractor and converts extracted features into visual entity tokens for the MLLM backbone.
Our experimental results show that GROUNDHOG achieves superior performance on various language grounding tasks without task-specific fine-tuning.
- Score: 22.347590874621865
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Most multimodal large language models (MLLMs) learn language-to-object grounding through causal language modeling where grounded objects are captured by bounding boxes as sequences of location tokens. This paradigm lacks pixel-level representations that are important for fine-grained visual understanding and diagnosis. In this work, we introduce GROUNDHOG, an MLLM developed by grounding Large Language Models to holistic segmentation. GROUNDHOG incorporates a masked feature extractor and converts extracted features into visual entity tokens for the MLLM backbone, which then connects groundable phrases to unified grounding masks by retrieving and merging the entity masks. To train GROUNDHOG, we carefully curated M3G2, a grounded visual instruction tuning dataset with Multi-Modal Multi-Grained Grounding, by harvesting a collection of segmentation-grounded datasets with rich annotations. Our experimental results show that GROUNDHOG achieves superior performance on various language grounding tasks without task-specific fine-tuning, and significantly reduces object hallucination. GROUNDHOG also demonstrates better grounding towards complex forms of visual input and provides easy-to-understand diagnosis in failure cases.
Related papers
- EAGLE: Towards Efficient Arbitrary Referring Visual Prompts Comprehension for Multimodal Large Language Models [80.00303150568696]
We propose a novel Multimodal Large Language Models (MLLM) that empowers comprehension of arbitrary referring visual prompts with less training efforts than existing approaches.
Our approach embeds referring visual prompts as spatial concepts conveying specific spatial areas comprehensible to the MLLM.
We also propose a Geometry-Agnostic Learning paradigm (GAL) to further disentangle the MLLM's region-level comprehension with the specific formats of referring visual prompts.
arXiv Detail & Related papers (2024-09-25T08:22:00Z) - FineCops-Ref: A new Dataset and Task for Fine-Grained Compositional Referring Expression Comprehension [10.482908189805872]
Referring Expression (REC) is a crucial cross-modal task that objectively evaluates the capabilities of language understanding, image comprehension, and language-to-image grounding.
We have established a new REC dataset characterized by two key features.
It includes negative text and images created through fine-grained editing and generation based on existing data.
arXiv Detail & Related papers (2024-09-23T06:56:51Z) - Learning Visual Grounding from Generative Vision and Language Model [29.2712567454021]
Visual grounding tasks aim to localize image regions based on natural language references.
We find that grounding knowledge already exists in generative VLM and can be elicited by proper prompting.
Our results demonstrate the promise of generative VLM to scale up visual grounding in the real world.
arXiv Detail & Related papers (2024-07-18T20:29:49Z) - ClawMachine: Fetching Visual Tokens as An Entity for Referring and Grounding [67.63933036920012]
Existing methods, including proxy encoding and geometry encoding, incorporate additional syntax to encode the object's location.
This study presents ClawMachine, offering a new methodology that notates an entity directly using the visual tokens.
ClawMachine unifies visual referring and grounding into an auto-regressive format and learns with a decoder-only architecture.
arXiv Detail & Related papers (2024-06-17T08:39:16Z) - Groma: Localized Visual Tokenization for Grounding Multimodal Large Language Models [62.36769498166312]
We introduce Groma, a Multimodal Large Language Model (MLLM) with grounded and fine-grained visual perception ability.
Groma is adept at region-level tasks such as region captioning and visual grounding.
By integrating region tokens into user instructions and model responses, we seamlessly enable Groma to understand user-specified region inputs.
arXiv Detail & Related papers (2024-04-19T17:22:51Z) - Multi-modal Instruction Tuned LLMs with Fine-grained Visual Perception [63.03288425612792]
We propose bfAnyRef, a general MLLM model that can generate pixel-wise object perceptions and natural language descriptions from multi-modality references.
Our model achieves state-of-the-art results across multiple benchmarks, including diverse modality referring segmentation and region-level referring expression generation.
arXiv Detail & Related papers (2024-03-05T13:45:46Z) - Probing Multimodal Large Language Models for Global and Local Semantic Representations [57.25949445963422]
We study which layers of Multimodal Large Language Models make the most effort to the global image information.
In this study, we find that the intermediate layers of models can encode more global semantic information.
We find that the topmost layers may excessively focus on local information, leading to a diminished ability to encode global information.
arXiv Detail & Related papers (2024-02-27T08:27:15Z) - Expand BERT Representation with Visual Information via Grounded Language
Learning with Multimodal Partial Alignment [11.148099070407431]
GroundedBERT is a grounded language learning method that enhances the BERT representation with visually grounded information.
Our proposed method significantly outperforms the baseline language models on various language tasks of the GLUE and SQuAD datasets.
arXiv Detail & Related papers (2023-12-04T03:16:48Z) - GLaMM: Pixel Grounding Large Multimodal Model [57.91763410032292]
We present Grounding LMM (GLaMM), the first model that can generate natural language responses seamlessly intertwined with corresponding object segmentation masks.
GLaMM is flexible enough to accept both textual and optional visual prompts (region of interest) as input.
Our proposed GCG task requires densely grounded concepts in natural scenes at a large-scale.
arXiv Detail & Related papers (2023-11-06T18:59:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.