Mitigating Errors in DC Magnetometry via Zero-Noise Extrapolation
- URL: http://arxiv.org/abs/2402.16949v1
- Date: Mon, 26 Feb 2024 19:00:02 GMT
- Title: Mitigating Errors in DC Magnetometry via Zero-Noise Extrapolation
- Authors: John S. Van Dyke, Zackary White, Gregory Quiroz
- Abstract summary: Zero-noise extrapolation (ZNE) is a technique to estimate quantum circuit expectation values through noise scaling and extrapolation.
We show that the sensitivity (in the sense of the minimum detectable signal) does not improve upon using ZNE in the slope detection scheme.
Our results are robust across various noise models and design choices for the ZNE protocols, including both single-qubit and multi-qubit entanglement-based sensing.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Zero-noise extrapolation (ZNE), a technique to estimate quantum circuit
expectation values through noise scaling and extrapolation, is well-studied in
the context of quantum computing. We examine the applicability of ZNE to the
field of quantum sensing. Focusing on the problem of DC magnetometry using the
Ramsey protocol, we show that the sensitivity (in the sense of the minimum
detectable signal) does not improve upon using ZNE in the slope detection
scheme. On the other hand, signals of sufficiently large magnitude can be
estimated more accurately. Our results are robust across various noise models
and design choices for the ZNE protocols, including both single-qubit and
multi-qubit entanglement-based sensing.
Related papers
- Noise Mitigation in Single Microwave Photon Counting by Cascaded Quantum Measurements [32.73124984242397]
Single microwave photon detectors (SMPDs) have only recently been demonstrated.
These detectors offer a substantial advantage over quantum-limited amplification schemes.
We report an intrinsic sensitivity of $8(1)times10-24textW/sqrttextHz$, with an operational sensitivity of $5.9(6)times 10-23textW/sqrttextHz$ limited by thermal photons in the input line.
arXiv Detail & Related papers (2025-02-20T18:26:48Z) - Rydberg Atomic Quantum Receivers for Multi-Target DOA Estimation [77.32323151235285]
Rydberg atomic quantum receivers (RAQRs) have emerged as a promising solution to classical wireless communication and sensing.
We first conceive a Rydberg atomic quantum uniform linear array (RAQ-ULA) aided receiver for multi-target detection.
We then propose the Rydberg atomic quantum estimation of signal parameters by designing a rotational invariance based technique termed as RAQ-ESPRIT.
arXiv Detail & Related papers (2025-01-06T07:42:23Z) - Error-Mitigated Quantum Random Access Memory [5.071240774172899]
We propose a modified version of Zero-Noise Extrapolation (ZNE) that provides for a significant performance enhancement on current noisy devices.
Our results demonstrate the critical role the extrapolation function plays in ZNE.
arXiv Detail & Related papers (2024-03-10T23:19:57Z) - Mitigating Errors on Superconducting Quantum Processors through Fuzzy
Clustering [38.02852247910155]
A new Quantum Error Mitigation (QEM) technique uses Fuzzy C-Means clustering to specifically identify measurement error patterns.
We report a proof-of-principle validation of the technique on a 2-qubit register, obtained as a subset of a real NISQ 5-qubit superconducting quantum processor.
We demonstrate that the FCM-based QEM technique allows for reasonable improvement of the expectation values of single- and two-qubit gates based quantum circuits.
arXiv Detail & Related papers (2024-02-02T14:02:45Z) - System Characterization of Dispersive Readout in Superconducting Qubits [37.940693612514984]
We introduce a single protocol to measure the dispersive shift, resonator linewidth, and drive power used in the dispersive readout of superconducting qubits.
We find that the resonator linewidth is poorly controlled with a factor of 2 between the maximum and minimum measured values.
We also introduce a protocol for measuring the readout system efficiency using the same power levels as are used in typical qubit readout.
arXiv Detail & Related papers (2024-02-01T08:15:16Z) - Signal Detection in MIMO Systems with Hardware Imperfections: Message
Passing on Neural Networks [101.59367762974371]
In this paper, we investigate signal detection in multiple-input-multiple-output (MIMO) communication systems with hardware impairments.
It is difficult to train a deep neural network (DNN) with limited pilot signals, hindering its practical applications.
We design an efficient message passing based Bayesian signal detector, leveraging the unitary approximate message passing (UAMP) algorithm.
arXiv Detail & Related papers (2022-10-08T04:32:58Z) - Error Mitigation-Aided Optimization of Parameterized Quantum Circuits:
Convergence Analysis [42.275148861039895]
Variational quantum algorithms (VQAs) offer the most promising path to obtaining quantum advantages via noisy processors.
gate noise due to imperfections and decoherence affects the gradient estimates by introducing a bias.
Quantum error mitigation (QEM) techniques can reduce the estimation bias without requiring any increase in the number of qubits.
QEM can reduce the number of required iterations, but only as long as the quantum noise level is sufficiently small.
arXiv Detail & Related papers (2022-09-23T10:48:04Z) - Benchmarking Machine Learning Algorithms for Adaptive Quantum Phase
Estimation with Noisy Intermediate-Scale Quantum Sensors [0.0]
We show that adaptive methods can be used to enhance the precision of quantum phase estimation when noisy non-entangled qubits are used as sensors.
We benchmark these schemes with respect to scenarios that include Gaussian and Random Telegraph fluctuations.
We discuss their robustness against noise in connection with real experimental setups such as Mach-Zehnder interferometry with optical photons and Ramsey interferometry in trapped ions.
arXiv Detail & Related papers (2021-08-16T09:10:32Z) - Error mitigation in quantum metrology via zero noise extrapolation [1.044291921757248]
We consider Zero Noise Extrapolation (ZNE) as an error mitigation strategy in quantum metrology.
ZNE can be an effective, resource efficient error mitigation alternative when strategies employing full quantum error correcting codes are unavailable.
arXiv Detail & Related papers (2021-01-11T08:52:27Z) - Digital zero noise extrapolation for quantum error mitigation [1.3701366534590498]
Zero-noise extrapolation (ZNE) is an increasingly popular technique for mitigating errors in noisy quantum computations.
We propose several improvements to noise scaling and extrapolation, the two key components in the technique.
Benchmarks of our techniques show error reductions of 18X to 24X over non-mitigated circuits.
This work is a self-contained introduction to the practical use of ZNE by quantum programmers.
arXiv Detail & Related papers (2020-05-21T21:56:40Z) - Optimal control for quantum detectors [0.0]
We find the optimal quantum control to detect an external signal in the presence of background noise using a quantum sensor.
For white background noise, the optimal solution is the simple and well-known spin-locking control scheme.
Results show that an optimal detection scheme can be easily implemented in near-term quantum sensors without the need for complicated pulse shaping.
arXiv Detail & Related papers (2020-05-12T18:15:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.