ViTaL: An Advanced Framework for Automated Plant Disease Identification
in Leaf Images Using Vision Transformers and Linear Projection For Feature
Reduction
- URL: http://arxiv.org/abs/2402.17424v2
- Date: Wed, 28 Feb 2024 02:16:42 GMT
- Title: ViTaL: An Advanced Framework for Automated Plant Disease Identification
in Leaf Images Using Vision Transformers and Linear Projection For Feature
Reduction
- Authors: Abhishek Sebastian, Annis Fathima A, Pragna R, Madhan Kumar S,
Yaswanth Kannan G, Vinay Murali
- Abstract summary: This paper introduces a robust framework for the automated identification of diseases in plant leaf images.
The framework incorporates several key stages to enhance disease recognition accuracy.
We propose a novel hardware design specifically tailored for scanning diseased leaves in an omnidirectional fashion.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Our paper introduces a robust framework for the automated identification of
diseases in plant leaf images. The framework incorporates several key stages to
enhance disease recognition accuracy. In the pre-processing phase, a thumbnail
resizing technique is employed to resize images, minimizing the loss of
critical image details while ensuring computational efficiency. Normalization
procedures are applied to standardize image data before feature extraction.
Feature extraction is facilitated through a novel framework built upon Vision
Transformers, a state-of-the-art approach in image analysis. Additionally,
alternative versions of the framework with an added layer of linear projection
and blockwise linear projections are explored. This comparative analysis allows
for the evaluation of the impact of linear projection on feature extraction and
overall model performance. To assess the effectiveness of the proposed
framework, various Convolutional Neural Network (CNN) architectures are
utilized, enabling a comprehensive evaluation of linear projection's influence
on key evaluation metrics. The findings demonstrate the efficacy of the
proposed framework, with the top-performing model achieving a Hamming loss of
0.054. Furthermore, we propose a novel hardware design specifically tailored
for scanning diseased leaves in an omnidirectional fashion. The hardware
implementation utilizes a Raspberry Pi Compute Module to address low-memory
configurations, ensuring practicality and affordability. This innovative
hardware solution enhances the overall feasibility and accessibility of the
proposed automated disease identification system. This research contributes to
the field of agriculture by offering valuable insights and tools for the early
detection and management of plant diseases, potentially leading to improved
crop yields and enhanced food security.
Related papers
- Small data deep learning methodology for in-field disease detection [6.2747249113031325]
We present the first machine learning model capable of detecting mild symptoms of late blight in potato crops.
Our proposal exploits the availability of high-resolution images via the concept of patching, and is based on deep convolutional neural networks with a focal loss function.
Our model correctly detects all cases of late blight in the test dataset, demonstrating a high level of accuracy and effectiveness in identifying early symptoms.
arXiv Detail & Related papers (2024-09-25T17:31:17Z) - Efficient Visual State Space Model for Image Deblurring [83.57239834238035]
Convolutional neural networks (CNNs) and Vision Transformers (ViTs) have achieved excellent performance in image restoration.
We propose a simple yet effective visual state space model (EVSSM) for image deblurring.
arXiv Detail & Related papers (2024-05-23T09:13:36Z) - Diffusion Model Driven Test-Time Image Adaptation for Robust Skin Lesion Classification [24.08402880603475]
We propose a test-time image adaptation method to enhance the accuracy of the model on test data.
We modify the target test images by projecting them back to the source domain using a diffusion model.
Our method makes the robustness more robust across various corruptions, architectures, and data regimes.
arXiv Detail & Related papers (2024-05-18T13:28:51Z) - Deep Domain Adaptation: A Sim2Real Neural Approach for Improving Eye-Tracking Systems [80.62854148838359]
Eye image segmentation is a critical step in eye tracking that has great influence over the final gaze estimate.
We use dimensionality-reduction techniques to measure the overlap between the target eye images and synthetic training data.
Our methods result in robust, improved performance when tackling the discrepancy between simulation and real-world data samples.
arXiv Detail & Related papers (2024-03-23T22:32:06Z) - OCR is All you need: Importing Multi-Modality into Image-based Defect Detection System [7.1083241462091165]
We introduce an external modality-guided data mining framework, primarily rooted in optical character recognition (OCR), to extract statistical features from images.
A key aspect of our approach is the alignment of external modality features, extracted using a single modality-aware model, with image features encoded by a convolutional neural network.
Our methodology considerably boosts the recall rate of the defect detection model and maintains high robustness even in challenging scenarios.
arXiv Detail & Related papers (2024-03-18T07:41:39Z) - Improving FHB Screening in Wheat Breeding Using an Efficient Transformer
Model [0.0]
Fusarium head blight is a devastating disease that causes significant economic losses annually on small grains.
Image processing techniques have been developed using supervised machine learning algorithms for the early detection of FHB.
A new Context Bridge is proposed to integrate the local representation capability of the U-Net network in the transformer model.
arXiv Detail & Related papers (2023-08-07T15:44:58Z) - Information-Theoretic Odometry Learning [83.36195426897768]
We propose a unified information theoretic framework for learning-motivated methods aimed at odometry estimation.
The proposed framework provides an elegant tool for performance evaluation and understanding in information-theoretic language.
arXiv Detail & Related papers (2022-03-11T02:37:35Z) - Less is More: Lighter and Faster Deep Neural Architecture for Tomato
Leaf Disease Classification [0.36700088931938835]
This work proposes a lightweight transfer learning-based approach for detecting diseases from tomato leaves.
It utilizes an effective preprocessing method to enhance the leaf images with illumination correction for improved classification.
The proposed architecture achieves 99.30% accuracy with a model size of 9.60MB and 4.87M floating-point operations.
arXiv Detail & Related papers (2021-09-06T12:14:02Z) - A parameter refinement method for Ptychography based on Deep Learning
concepts [55.41644538483948]
coarse parametrisation in propagation distance, position errors and partial coherence frequently menaces the experiment viability.
A modern Deep Learning framework is used to correct autonomously the setup incoherences, thus improving the quality of a ptychography reconstruction.
We tested our system on both synthetic datasets and also on real data acquired at the TwinMic beamline of the Elettra synchrotron facility.
arXiv Detail & Related papers (2021-05-18T10:15:17Z) - Learning Deformable Image Registration from Optimization: Perspective,
Modules, Bilevel Training and Beyond [62.730497582218284]
We develop a new deep learning based framework to optimize a diffeomorphic model via multi-scale propagation.
We conduct two groups of image registration experiments on 3D volume datasets including image-to-atlas registration on brain MRI data and image-to-image registration on liver CT data.
arXiv Detail & Related papers (2020-04-30T03:23:45Z) - Rectified Meta-Learning from Noisy Labels for Robust Image-based Plant
Disease Diagnosis [64.82680813427054]
Plant diseases serve as one of main threats to food security and crop production.
One popular approach is to transform this problem as a leaf image classification task, which can be addressed by the powerful convolutional neural networks (CNNs)
We propose a novel framework that incorporates rectified meta-learning module into common CNN paradigm to train a noise-robust deep network without using extra supervision information.
arXiv Detail & Related papers (2020-03-17T09:51:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.