論文の概要: Data augmentation method for modeling health records with applications
to clopidogrel treatment failure detection
- arxiv url: http://arxiv.org/abs/2402.18046v1
- Date: Wed, 28 Feb 2024 04:47:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-29 16:29:32.660841
- Title: Data augmentation method for modeling health records with applications
to clopidogrel treatment failure detection
- Title(参考訳): 健康記録のモデル化のためのデータ拡張法とclopidogrel治療障害検出への応用
- Authors: Sunwoong Choi and Samuel Kim
- Abstract要約: 提案手法は,訪問中の医療記録の順序を並べ替えることで,拡張データを生成する。
提案手法をクロピドレル処理障害検出タスクに適用することにより,ROC-AUCで最大5.3%の絶対改善が可能となった。
- 参考スコア(独自算出の注目度): 0.5957022371135096
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a novel data augmentation method to address the challenge of data
scarcity in modeling longitudinal patterns in Electronic Health Records (EHR)
of patients using natural language processing (NLP) algorithms. The proposed
method generates augmented data by rearranging the orders of medical records
within a visit where the order of elements are not obvious, if any. Applying
the proposed method to the clopidogrel treatment failure detection task enabled
up to 5.3% absolute improvement in terms of ROC-AUC (from 0.908 without
augmentation to 0.961 with augmentation) when it was used during the
pre-training procedure. It was also shown that the augmentation helped to
improve performance during fine-tuning procedures, especially when the amount
of labeled training data is limited.
- Abstract(参考訳): 自然言語処理(NLP)アルゴリズムを用いた患者の電子健康記録(EHR)における時系列パターンのモデリングにおけるデータ不足の課題に対処する新しいデータ拡張手法を提案する。
提案手法は, 元素の順序が明確でない訪問先において, 医療記録の順序を並べ替えることにより, 拡張データを生成する。
提案手法をクロピドレル処理失敗検出タスクに適用することにより, プレトレーニング中に使用した場合に, ROC-AUC(増量せずに0.908から0.961まで)で5.3%の絶対改善が可能となった。
また,この強化は,特にラベル付きトレーニングデータの量が限られている場合には,微調整手順における性能向上に寄与した。
関連論文リスト
- Improving EEG Classification Through Randomly Reassembling Original and Generated Data with Transformer-based Diffusion Models [12.703528969668062]
本稿では,トランスフォーマーを用いた拡散確率モデルとデータに基づく拡張手法を提案する。
脳波信号の特徴として,信号の事前処理を行う定数要素スケーリング手法を提案する。
提案手法は,生成したデータを時間領域の原データでランダムに再集合し,ビジナルデータを取得する。
論文 参考訳(メタデータ) (2024-07-20T06:58:14Z) - Step-DPO: Step-wise Preference Optimization for Long-chain Reasoning of LLMs [54.05511925104712]
本稿では,Step-DPOと呼ばれるシンプルで効果的でデータ効率のよい手法を提案する。
Step-DPOは、個々の推論ステップを、論理的に回答を評価するのではなく、優先最適化の単位として扱う。
以上の結果から,70B パラメータ以上のモデルでは,10K の選好データペアと500 Step-DPO トレーニングステップ以下では,MATH の精度が約3%向上する可能性が示唆された。
論文 参考訳(メタデータ) (2024-06-26T17:43:06Z) - Guided Discrete Diffusion for Electronic Health Record Generation [47.129056768385084]
EHRは、病気の進行予測、臨床試験設計、健康経済学と結果研究など、多くの計算医学の応用を可能にする中心的なデータソースである。
幅広いユーザビリティにもかかわらず、その繊細な性質はプライバシーと秘密の懸念を高め、潜在的なユースケースを制限する。
これらの課題に対処するために,人工的かつ現実的なEHRを合成するための生成モデルの利用について検討する。
論文 参考訳(メタデータ) (2024-04-18T16:50:46Z) - ArSDM: Colonoscopy Images Synthesis with Adaptive Refinement Semantic
Diffusion Models [69.9178140563928]
大腸内視鏡検査は臨床診断や治療に不可欠である。
注釈付きデータの不足は、既存の手法の有効性と一般化を制限する。
本稿では, 下流作業に有用な大腸内視鏡画像を生成するために, 適応Refinement Semantic Diffusion Model (ArSDM)を提案する。
論文 参考訳(メタデータ) (2023-09-03T07:55:46Z) - Data Augmentation for Seizure Prediction with Generative Diffusion Model [26.967247641926814]
重症度予測は患者の生活改善に非常に重要である。
初期データと中間データの間の深刻な不均衡問題は、依然として大きな課題となっている。
データ拡張は、この問題を解決するための直感的な方法です。
DiffEEGと呼ばれる拡散モデルを用いた新しいデータ拡張手法を提案する。
論文 参考訳(メタデータ) (2023-06-14T05:44:53Z) - Conditional Generative Data Augmentation for Clinical Audio Datasets [36.45569352490318]
本稿では,重み付き条件付きWasserstein Generative Adversarial Networkに基づく臨床オーディオデータセットのための新しいデータ拡張手法を提案する。
本手法を検証するため,THA(Total Hipplasty)手術中に実世界の手術室で記録された臨床オーディオデータセットを作成した。
生成した強化サンプルによるトレーニングは、分類精度の点で古典的な音声強調法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-03-22T09:47:31Z) - Invariance Learning in Deep Neural Networks with Differentiable Laplace
Approximations [76.82124752950148]
我々はデータ拡張を選択するための便利な勾配法を開発した。
我々はKronecker-factored Laplace近似を我々の目的とする限界確率に近似する。
論文 参考訳(メタデータ) (2022-02-22T02:51:11Z) - A random shuffle method to expand a narrow dataset and overcome the
associated challenges in a clinical study: a heart failure cohort example [50.591267188664666]
本研究の目的は、統計的に合法なHFデータセットのカーディナリティを高めるためにランダムシャッフル法を設計することであった。
提案されたランダムシャッフル法は、HFデータセットのカーディナリティを10回、およびランダムな繰り返し測定アプローチに続いて21回向上させることができた。
論文 参考訳(メタデータ) (2020-12-12T10:59:38Z) - Longitudinal modeling of MS patient trajectories improves predictions of
disability progression [2.117653457384462]
本研究は, 実世界の患者データから情報を最適に抽出する作業に対処する。
本研究では,患者軌跡モデリングに適した機械学習手法を用いることで,患者の障害進行を2年間の地平線で予測できることを示す。
文献で利用可能なモデルと比較して、この研究はMS病の進行予測に最も完全な患者履歴を使用する。
論文 参考訳(メタデータ) (2020-11-09T20:48:00Z) - Automatic Data Augmentation via Deep Reinforcement Learning for
Effective Kidney Tumor Segmentation [57.78765460295249]
医用画像セグメンテーションのための新しい学習ベースデータ拡張法を開発した。
本手法では,データ拡張モジュールと後続のセグメンテーションモジュールをエンドツーエンドのトレーニング方法で一貫した損失と,革新的に組み合わせる。
提案法の有効性を検証したCT腎腫瘍分節法について,本法を広範囲に評価した。
論文 参考訳(メタデータ) (2020-02-22T14:10:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。