論文の概要: End-to-End Quantum Vision Transformer: Towards Practical Quantum Speedup
in Large-Scale Models
- arxiv url: http://arxiv.org/abs/2402.18940v2
- Date: Fri, 1 Mar 2024 06:05:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-04 11:41:32.208951
- Title: End-to-End Quantum Vision Transformer: Towards Practical Quantum Speedup
in Large-Scale Models
- Title(参考訳): エンド・ツー・エンドの量子ビジョントランスフォーマー:大規模モデルにおける実用的な量子スピードアップに向けて
- Authors: Cheng Xue, Zhao-Yun Chen, Xi-Ning Zhuang, Yun-Jie Wang, Tai-Ping Sun,
Jun-Chao Wang, Huan-Yu Liu, Yu-Chun Wu, Zi-Lei Wang, Guo-Ping Guo
- Abstract要約: 本稿では、革新的な量子残差接続技術を含む、エンドツーエンドの量子ビジョン変換器(QViT)を紹介する。
QViTの徹底的な分析により、理論上指数関数的複雑性と経験的スピードアップが明らかとなり、量子コンピューティングアプリケーションにおけるモデルの効率性とポテンシャルが示される。
- 参考スコア(独自算出の注目度): 20.72342380227143
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The field of quantum deep learning presents significant opportunities for
advancing computational capabilities, yet it faces a major obstacle in the form
of the "information loss problem" due to the inherent limitations of the
necessary quantum tomography in scaling quantum deep neural networks. This
paper introduces an end-to-end Quantum Vision Transformer (QViT), which
incorporates an innovative quantum residual connection technique, to overcome
these challenges and therefore optimize quantum computing processes in deep
learning. Our thorough complexity analysis of the QViT reveals a theoretically
exponential and empirically polynomial speedup, showcasing the model's
efficiency and potential in quantum computing applications. We conducted
extensive numerical tests on modern, large-scale transformers and datasets,
establishing the QViT as a pioneering advancement in applying quantum deep
neural networks in practical scenarios. Our work provides a comprehensive
quantum deep learning paradigm, which not only demonstrates the versatility of
current quantum linear algebra algorithms but also promises to enhance future
research and development in quantum deep learning.
- Abstract(参考訳): 量子深層学習の分野は、計算能力を進歩させる重要な機会を提供するが、量子深部ニューラルネットワークのスケーリングに必要な量子トモグラフィーの固有の制限のため、"情報損失問題"の形で大きな障害に直面している。
本稿では、革新的な量子残差接続技術を備えたエンドツーエンド量子ビジョン変換器(QViT)を導入し、これらの課題を克服し、深層学習における量子コンピューティングプロセスを最適化する。
我々のQViTの徹底的な複雑性解析は、理論上指数関数的で経験的に多項式のスピードアップを示し、量子コンピューティングアプリケーションにおけるモデルの効率性とポテンシャルを示している。
最近の大規模変圧器やデータセットに関する広範な数値実験を行い、qvitを量子深層ニューラルネットワークを実用シナリオに適用する先駆的な進歩として確立した。
我々の研究は、現在の量子線形代数アルゴリズムの汎用性を実証するだけでなく、量子深層学習における将来の研究と開発を強化することを約束する包括的な量子深層学習パラダイムを提供する。
関連論文リスト
- Quantum Generative Adversarial Networks: Bridging Classical and Quantum
Realms [0.6827423171182153]
GAN(Generative Adversarial Networks)領域における古典的および量子コンピューティングパラダイムの相乗的融合について検討する。
我々の目的は、量子計算要素を従来のGANアーキテクチャにシームレスに統合し、トレーニングプロセスの強化のために新しい経路を開放することである。
この研究は量子化機械学習の最前線に位置し、量子システムの計算能力を活用するための重要な一歩である。
論文 参考訳(メタデータ) (2023-12-15T16:51:36Z) - XpookyNet: Advancement in Quantum System Analysis through Convolutional
Neural Networks for Detection of Entanglement [0.0]
量子システムに適したカスタムディープ畳み込みニューラルネットワーク(CNN)モデルを導入する。
提案するCNNモデルであるXpookyNetは,複素数データを扱うという課題を効果的に克服する。
まず第一に、量子状態は完全かつ部分的に絡み合った状態を調べるためにより正確に分類されるべきである。
論文 参考訳(メタデータ) (2023-09-07T17:52:43Z) - Entanglement-Assisted Quantum Networks: Mechanics, Enabling
Technologies, Challenges, and Research Directions [66.27337498864556]
本稿では,量子ネットワークの絡み合いに関する包括的調査を行う。
ネットワーク構造、作業原則、開発段階の詳細な概要を提供する。
また、アーキテクチャ設計、絡み合いに基づくネットワーク問題、標準化など、オープンな研究の方向性を強調している。
論文 参考訳(メタデータ) (2023-07-24T02:48:22Z) - DQC$^2$O: Distributed Quantum Computing for Collaborative Optimization
in Future Networks [54.03701670739067]
本稿では、将来のネットワークにおける最適化タスクを解決するために、量子コンピュータと量子チャネルを管理するための適応型分散量子コンピューティング手法を提案する。
提案手法に基づいて,スマートグリッド管理やIoT連携,UAV軌道計画など,今後のネットワークにおける協調最適化の潜在的な応用について論じる。
論文 参考訳(メタデータ) (2022-09-16T02:44:52Z) - Quantum Neural Architecture Search with Quantum Circuits Metric and
Bayesian Optimization [2.20200533591633]
各量子状態に対するゲートの作用を特徴付ける新しい量子ゲート距離を提案する。
提案手法は、経験的量子機械学習の3つの問題において、ベンチマークを著しく上回っている。
論文 参考訳(メタデータ) (2022-06-28T16:23:24Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
量子生成学習モデル(QGLM)は、古典的な学習モデルを上回る可能性がある。
機械学習の観点からQGLMの現状を概観する。
従来の機械学習タスクと量子物理学の両方におけるQGLMの潜在的な応用について論じる。
論文 参考訳(メタデータ) (2022-06-07T07:32:57Z) - Quantum neural networks force fields generation [0.0]
量子ニューラルネットワークアーキテクチャを設計し、複雑性が増大するさまざまな分子に適用することに成功しています。
量子モデルは古典的なモデルに対してより大きな有効次元を示し、競争性能に達することができる。
論文 参考訳(メタデータ) (2022-03-09T12:10:09Z) - Quantum Annealing Formulation for Binary Neural Networks [40.99969857118534]
本研究では、リソース制約のあるデバイスを意図した軽量で強力なモデルであるバイナリニューラルネットワークについて検討する。
トレーニング問題に対する2次非制約バイナリ最適化の定式化を考案する。
問題は難解であり、すなわち、二分重みを推定するコストはネットワークサイズと指数関数的にスケールするが、どのようにして問題を量子アニール器に直接最適化できるかを示す。
論文 参考訳(メタデータ) (2021-07-05T03:20:54Z) - Tensor Network Quantum Virtual Machine for Simulating Quantum Circuits
at Exascale [57.84751206630535]
本稿では,E-scale ACCelerator(XACC)フレームワークにおける量子回路シミュレーションバックエンドとして機能する量子仮想マシン(TNQVM)の近代化版を提案する。
新バージョンは汎用的でスケーラブルなネットワーク処理ライブラリであるExaTNをベースにしており、複数の量子回路シミュレータを提供している。
ポータブルなXACC量子プロセッサとスケーラブルなExaTNバックエンドを組み合わせることで、ラップトップから将来のエクサスケールプラットフォームにスケール可能なエンドツーエンドの仮想開発環境を導入します。
論文 参考訳(メタデータ) (2021-04-21T13:26:42Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
線形および非線形の層をユニタリ量子ゲートとして表現する方法を示し、量子モデルの基本的な励起を粒子として解釈する。
ニューラルネットワークの研究のための新しい視点と技術を開くことに加えて、量子定式化は光量子コンピューティングに適している。
論文 参考訳(メタデータ) (2021-03-08T17:24:29Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
超伝導量子プロセッサを用いた実世界の手書き桁画像の学習と生成を実験的に行う。
我々の研究は、短期量子デバイス上での高度な量子生成モデル開発のためのガイダンスを提供する。
論文 参考訳(メタデータ) (2020-10-13T06:57:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。