論文の概要: Solving Jigsaw Puzzles using Iterative Random Sampling: Parallels with
Development of Skill Mastery
- arxiv url: http://arxiv.org/abs/2403.00095v1
- Date: Thu, 29 Feb 2024 19:48:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-05 19:02:43.501406
- Title: Solving Jigsaw Puzzles using Iterative Random Sampling: Parallels with
Development of Skill Mastery
- Title(参考訳): 反復的ランダムサンプリングによるjigsawパズルの解法--スキル熟達と並行して
- Authors: Neil Zhao, Diana Zheng
- Abstract要約: 繰り返しランダムサンプリングはジグソーパズルを2つのフェーズで解き、ラグフェーズは変化が少なく、時間の大半を占め、成長フェーズは急速かつ差し迫ったパズルの完成を示す。
パズルの完成度を高め、熟練度を高める指標となる作品間のつながりの発達に重点が置かれている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Skill mastery is a priority for success in all fields. We present a parallel
between the development of skill mastery and the process of solving jigsaw
puzzles. We show that iterative random sampling solves jigsaw puzzles in two
phases: a lag phase that is characterized by little change and occupies the
majority of the time, and a growth phase that marks rapid and imminent puzzle
completion. Changes in the proportions of the number of single pieces and
larger pieces can be overlaid on the timeline and progression of skill mastery.
An emphasis is placed on the development of connections between pieces, which
serves as an indicator of increasing puzzle completion and increasing skill
mastery. Our manuscript provides a straightforward visual of skill mastery in
the context of a common recreational activity.
- Abstract(参考訳): スキルの習得はあらゆる分野で成功の優先事項である。
本稿では,スキル熟達の発達とジグソーパズルの解法について考察する。
反復的ランダムサンプリングはジグソーパズルを2つのフェーズで解く: ほとんど変化せず、時間の大部分を占めるラグフェーズと、迅速かつ差し迫ったパズル完了をマークする成長フェーズである。
シングルピース数とより大きなピース数の比率の変化は、スキル熟達の時系列と進行によってオーバーレイすることができる。
ピース間の接続の発展に重点が置かれており、パズルの完成度向上とスキルの習得の指標となっている。
我々の原稿は、共通のレクリエーション活動の文脈において、スキルの習得の素直な視覚を提供する。
関連論文リスト
- Making New Connections: LLMs as Puzzle Generators for The New York Times' Connections Word Game [6.136654326170453]
コネクションパズル(Connections puzzle)は、ニューヨーク・タイムズ(NYT)が毎日発行しているワードアソシエーションゲームである。
新たなパズルを生成するには、メタ認知の形式が必要である: ジェネレータは、潜在的な解決者の下流の推論を正確にモデル化できなければならない。
この結果から,LLMは有能なパズル作成者であり,人間によって判断されるような,楽しい,挑戦的な,創造的なコネクトパズルを多種多様なセットで生成できることがわかった。
論文 参考訳(メタデータ) (2024-07-15T21:05:25Z) - Automated Graph Genetic Algorithm based Puzzle Validation for Faster
Game Desig [69.02688684221265]
本稿では,コンピュータゲームにおける論理パズルを効率的に解くための進化的アルゴリズムを提案する。
制約満足度問題に対するハイブリッド遺伝的アプローチの様々なバリエーションについて論じる。
論文 参考訳(メタデータ) (2023-02-17T18:15:33Z) - Video Anomaly Detection by Solving Decoupled Spatio-Temporal Jigsaw
Puzzles [67.39567701983357]
ビデオ異常検出(VAD)はコンピュータビジョンにおいて重要なトピックである。
近年の自己教師型学習の進歩に触発された本論文は,直感的かつ難解なプレテキストタスクを解くことによって,VADに対処する。
提案手法は3つの公開ベンチマークにおいて最先端のベンチマークよりも優れている。
論文 参考訳(メタデータ) (2022-07-20T19:49:32Z) - GANzzle: Reframing jigsaw puzzle solving as a retrieval task using a
generative mental image [15.132848477903314]
すべての部品からメンタルなイメージを推測し、その部品を爆発を避けるためにマッチさせることができる。
本研究では,未整列片の集合が与えられた画像の再構成方法を学び,各部品の符号化を発電機の収穫層に整合させる共同埋め込み空間を学習する。
このような場合、我々のモデルはパズルのサイズに依存しないが、従来の1つの大きさの深層学習法とは対照的である。
論文 参考訳(メタデータ) (2022-07-12T16:02:00Z) - Fast Inference and Transfer of Compositional Task Structures for
Few-shot Task Generalization [101.72755769194677]
本稿では,タスクがサブタスクグラフによって特徴づけられる,数発の強化学習問題として定式化する。
我々のマルチタスクサブタスクグラフ推論器(MTSGI)は、トレーニングタスクから、まず、サブタスクグラフの観点から、一般的なハイレベルなタスク構造を推測する。
提案手法は,2次元グリッドワールドおよび複雑なWebナビゲーション領域において,タスクの共通基盤構造を学習し,活用し,未知のタスクへの適応を高速化する。
論文 参考訳(メタデータ) (2022-05-25T10:44:25Z) - Towards More Generalizable One-shot Visual Imitation Learning [81.09074706236858]
汎用ロボットは、幅広いタスクを習得し、過去の経験を生かして、新しいタスクを素早く学ぶことができるべきである。
ワンショット模倣学習(OSIL)は、専門家のデモンストレーションでエージェントを訓練することで、この目標にアプローチする。
我々は、より野心的なマルチタスク設定を調査することで、より高度な一般化能力を追求する。
論文 参考訳(メタデータ) (2021-10-26T05:49:46Z) - Learning to Play Imperfect-Information Games by Imitating an Oracle
Planner [77.67437357688316]
我々は、同時移動と大規模なステートアクションスペースでマルチプレイヤーの不完全な情報ゲームをプレイする学習を検討します。
我々のアプローチはモデルに基づく計画に基づいている。
我々は,Clash Royale と Pommerman のゲームにおいて,プランナーが効率的なプレイ戦略を発見することができることを示す。
論文 参考訳(メタデータ) (2020-12-22T17:29:57Z) - Pictorial and apictorial polygonal jigsaw puzzles: The lazy caterer
model, properties, and solvers [14.08706290287121]
任意の直線切断数で大域多角形/像を切断して生成した一般凸多角形であるジグソーパズルを定式化する。
このようなパズルの理論的性質を解析し、ピースが幾何的ノイズで汚染されたときの解法に固有の課題を含む。
論文 参考訳(メタデータ) (2020-08-17T22:07:40Z) - Modeling Long-horizon Tasks as Sequential Interaction Landscapes [75.5824586200507]
本稿では,一連のデモビデオからのみ,サブタスク間の依存関係と遷移を学習するディープラーニングネットワークを提案する。
これらのシンボルは、画像観察から直接学習し、予測できることが示される。
我々は,(1)人間によって実行されるパズル片のブロック積み重ね,(2)物体のピック・アンド・プレイスとキャビネットドアを7-DoFロボットアームで滑らせるロボット操作という,2つの長期水平作業において,我々の枠組みを評価する。
論文 参考訳(メタデータ) (2020-06-08T18:07:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。