Monte Carlo based techniques for quantum magnets with long-range
interactions
- URL: http://arxiv.org/abs/2403.00421v1
- Date: Fri, 1 Mar 2024 10:17:00 GMT
- Title: Monte Carlo based techniques for quantum magnets with long-range
interactions
- Authors: P. Adelhardt, J. A. Koziol, A. Langheld, and K. P. Schmidt
- Abstract summary: Long-range interactions are relevant for a large variety of quantum systems in quantum optics and condensed matter physics.
From a theoretical perspective, long-range interactions are notoriously complicated to treat.
We give an overview of recent advancements to investigate quantum magnets with long-range interactions.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Long-range interactions are relevant for a large variety of quantum systems
in quantum optics and condensed matter physics. In particular, the control of
quantum-optical platforms promises to gain deep insights in quantum-critical
properties induced by the long-range nature of interactions. From a theoretical
perspective, long-range interactions are notoriously complicated to treat.
Here, we give an overview of recent advancements to investigate quantum magnets
with long-range interactions focusing on two techniques based on Monte Carlo
integration. First, the method of perturbative continuous unitary
transformations where classical Monte Carlo integration is applied within the
embedding scheme of white graphs. This linked-cluster expansion allows to
extract high-order series expansions of energies and observables in the
thermodynamic limit. Second, stochastic series expansion quantum Monte Carlo
which enables calculations on large finite systems. Finite-size scaling can
then be used to determine physical properties of the infinite system. In recent
years, both techniques have been applied successfully to one- and
two-dimensional quantum magnets involving long-range Ising, XY, and Heisenberg
interactions on various bipartite and non-bipartite lattices. Here, we
summarise the obtained quantum-critical properties including critical exponents
for all these systems in a coherent way. Further, we review how long-range
interactions are used to study quantum phase transitions above the upper
critical dimension and the scaling techniques to extract these quantum critical
properties from the numerical calculations.
Related papers
- Interplay of Quantum Coherence and Nonequilibrium Quantum Transport: An Exact Density Matrix Formulation in the Heisenberg Framework [0.0]
We bridge the gap between quantum coherence, quantum correlations, and nonequilibrium quantum transport in a quantum double-dot (QDD) system interacting with fermionic reservoirs.
We establish a connection between quantum coherence and transport current in a QDD system serially coupled to fermionic reservoirs.
arXiv Detail & Related papers (2025-02-17T18:27:14Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Probing critical phenomena in open quantum systems using atom arrays [3.365378662696971]
At quantum critical points, correlations decay as a power law, with exponents determined by a set of universal scaling dimensions.
Here, we employ a Rydberg quantum simulator to adiabatically prepare critical ground states of both a one-dimensional ring and a two-dimensional square lattice.
By accounting for and tuning the openness of our quantum system, we are able to directly observe power-law correlations and extract the corresponding scaling dimensions.
arXiv Detail & Related papers (2024-02-23T15:21:38Z) - Dipolar quantum solids emerging in a Hubbard quantum simulator [45.82143101967126]
Long-range and anisotropic interactions promote rich spatial structure in quantum mechanical many-body systems.
We show that novel strongly correlated quantum phases can be realized using long-range dipolar interaction in optical lattices.
This work opens the door to quantum simulations of a wide range of lattice models with long-range and anisotropic interactions.
arXiv Detail & Related papers (2023-06-01T16:49:20Z) - Highly resolved spectral functions of two-dimensional systems with
neural quantum states [0.0]
We develop a versatile approach using neural quantum states to obtain spectral properties based on simulations of excitations initially localized in real or momentum space.
Our approach is broadly applicable to interacting quantum lattice models in two dimensions and opens up a route to compute spectral properties of correlated quantum matter in yet inaccessible regimes.
arXiv Detail & Related papers (2023-03-14T19:00:27Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Observation of partial and infinite-temperature thermalization induced
by repeated measurements on a quantum hardware [62.997667081978825]
We observe partial and infinite-temperature thermalization on a quantum superconducting processor.
We show that the convergence does not tend to a completely mixed (infinite-temperature) state, but to a block-diagonal state in the observable basis.
arXiv Detail & Related papers (2022-11-14T15:18:11Z) - Quantum and classical correlations in open quantum-spin lattices via
truncated-cumulant trajectories [0.0]
We show a new method to treat open quantum-spin lattices, based on the solution of the open-system dynamics.
We validate this approach in the paradigmatic case of the phase transitions of the dissipative 2D XYZ lattice, subject to spontaneous decay.
arXiv Detail & Related papers (2022-09-27T13:23:38Z) - Exponential clustering of bipartite quantum entanglement at arbitrary
temperatures [0.0]
We show that bi-partite long-range entanglement is unstable at arbitrary temperatures and exponentially decays with distance.
Our work reveals novel general aspects of low-temperature quantum physics and sheds light on the characterization of long-range entanglement.
arXiv Detail & Related papers (2021-08-27T10:12:47Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.