Employing LLMs for Incident Response Planning and Review
- URL: http://arxiv.org/abs/2403.01271v1
- Date: Sat, 2 Mar 2024 17:23:41 GMT
- Title: Employing LLMs for Incident Response Planning and Review
- Authors: Sam Hays, Dr. Jules White,
- Abstract summary: Incident Response Planning (IRP) is essential for effective cybersecurity management.
Yet, creating comprehensive IRPs is often hindered by challenges such as complex systems, high turnover rates, and legacy technologies lacking documentation.
This paper argues that the development, review, and refinement of IRPs can be significantly enhanced through the utilization of Large Language Models (LLMs) like ChatGPT.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Incident Response Planning (IRP) is essential for effective cybersecurity management, requiring detailed documentation (or playbooks) to guide security personnel during incidents. Yet, creating comprehensive IRPs is often hindered by challenges such as complex systems, high turnover rates, and legacy technologies lacking documentation. This paper argues that, despite these obstacles, the development, review, and refinement of IRPs can be significantly enhanced through the utilization of Large Language Models (LLMs) like ChatGPT. By leveraging LLMs for tasks such as drafting initial plans, suggesting best practices, and identifying documentation gaps, organizations can overcome resource constraints and improve their readiness for cybersecurity incidents. We discuss the potential of LLMs to streamline IRP processes, while also considering the limitations and the need for human oversight in ensuring the accuracy and relevance of generated content. Our findings contribute to the cybersecurity field by demonstrating a novel approach to enhancing IRP with AI technologies, offering practical insights for organizations seeking to bolster their incident response capabilities.
Related papers
- StructRAG: Boosting Knowledge Intensive Reasoning of LLMs via Inference-time Hybrid Information Structurization [94.31508613367296]
Retrieval-augmented generation (RAG) is a key means to effectively enhance large language models (LLMs)
We propose StructRAG, which can identify the optimal structure type for the task at hand, reconstruct original documents into this structured format, and infer answers based on the resulting structure.
Experiments show that StructRAG achieves state-of-the-art performance, particularly excelling in challenging scenarios.
arXiv Detail & Related papers (2024-10-11T13:52:44Z) - Alignment of Cybersecurity Incident Prioritisation with Incident Response Management Maturity Capabilities [0.0]
This paper explores a possible utilisation of IR CMMs assessments to prioritise high-risk incidents.
The findings reveal common weaknesses in incident response, such as inadequate training and poor communication.
The analysis also emphasises the importance of organisational culture in enhancing incident response capabilities.
arXiv Detail & Related papers (2024-10-03T07:05:47Z) - Can LLMs be Fooled? Investigating Vulnerabilities in LLMs [4.927763944523323]
The advent of Large Language Models (LLMs) has garnered significant popularity and wielded immense power across various domains within Natural Language Processing (NLP)
This paper will synthesize the findings from each vulnerability section and propose new directions of research and development.
By understanding the focal points of current vulnerabilities, we can better anticipate and mitigate future risks.
arXiv Detail & Related papers (2024-07-30T04:08:00Z) - Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More? [54.667202878390526]
Long-context language models (LCLMs) have the potential to revolutionize our approach to tasks traditionally reliant on external tools like retrieval systems or databases.
We introduce LOFT, a benchmark of real-world tasks requiring context up to millions of tokens designed to evaluate LCLMs' performance on in-context retrieval and reasoning.
Our findings reveal LCLMs' surprising ability to rival state-of-the-art retrieval and RAG systems, despite never having been explicitly trained for these tasks.
arXiv Detail & Related papers (2024-06-19T00:28:58Z) - Current state of LLM Risks and AI Guardrails [0.0]
Large language models (LLMs) have become increasingly sophisticated, leading to widespread deployment in sensitive applications where safety and reliability are paramount.
These risks necessitate the development of "guardrails" to align LLMs with desired behaviors and mitigate potential harm.
This work explores the risks associated with deploying LLMs and evaluates current approaches to implementing guardrails and model alignment techniques.
arXiv Detail & Related papers (2024-06-16T22:04:10Z) - A Survey on RAG Meeting LLMs: Towards Retrieval-Augmented Large Language Models [71.25225058845324]
Large Language Models (LLMs) have demonstrated revolutionary abilities in language understanding and generation.
Retrieval-Augmented Generation (RAG) can offer reliable and up-to-date external knowledge.
RA-LLMs have emerged to harness external and authoritative knowledge bases, rather than relying on the model's internal knowledge.
arXiv Detail & Related papers (2024-05-10T02:48:45Z) - Unveiling the Misuse Potential of Base Large Language Models via In-Context Learning [61.2224355547598]
Open-sourcing of large language models (LLMs) accelerates application development, innovation, and scientific progress.
Our investigation exposes a critical oversight in this belief.
By deploying carefully designed demonstrations, our research demonstrates that base LLMs could effectively interpret and execute malicious instructions.
arXiv Detail & Related papers (2024-04-16T13:22:54Z) - Safe and Robust Reinforcement Learning: Principles and Practice [0.0]
Reinforcement Learning has shown remarkable success in solving relatively complex tasks.
The deployment of RL systems in real-world scenarios poses significant challenges related to safety and robustness.
This paper explores the main dimensions of the safe and robust RL landscape, encompassing algorithmic, ethical, and practical considerations.
arXiv Detail & Related papers (2024-03-27T13:14:29Z) - Securing Large Language Models: Threats, Vulnerabilities and Responsible Practices [4.927763944523323]
Large language models (LLMs) have significantly transformed the landscape of Natural Language Processing (NLP)
This research paper thoroughly investigates security and privacy concerns related to LLMs from five thematic perspectives.
The paper recommends promising avenues for future research to enhance the security and risk management of LLMs.
arXiv Detail & Related papers (2024-03-19T07:10:58Z) - Learning Logic Specifications for Policy Guidance in POMDPs: an
Inductive Logic Programming Approach [57.788675205519986]
We learn high-quality traces from POMDP executions generated by any solver.
We exploit data- and time-efficient Indu Logic Programming (ILP) to generate interpretable belief-based policy specifications.
We show that learneds expressed in Answer Set Programming (ASP) yield performance superior to neural networks and similar to optimal handcrafted task-specifics within lower computational time.
arXiv Detail & Related papers (2024-02-29T15:36:01Z) - On the Risk of Misinformation Pollution with Large Language Models [127.1107824751703]
We investigate the potential misuse of modern Large Language Models (LLMs) for generating credible-sounding misinformation.
Our study reveals that LLMs can act as effective misinformation generators, leading to a significant degradation in the performance of Open-Domain Question Answering (ODQA) systems.
arXiv Detail & Related papers (2023-05-23T04:10:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.