論文の概要: Large Language Models and Video Games: A Preliminary Scoping Review
- arxiv url: http://arxiv.org/abs/2403.02613v1
- Date: Tue, 5 Mar 2024 03:04:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-06 16:16:43.333046
- Title: Large Language Models and Video Games: A Preliminary Scoping Review
- Title(参考訳): 大規模言語モデルとビデオゲーム:予備的なスコーピングのレビュー
- Authors: Penny Sweetser
- Abstract要約: 大型言語モデル(LLM)は、ビデオゲームの設計、開発、研究に興味深い可能性を秘めている。
ゲームAI,ゲーム開発,物語,ゲーム研究とレビューを中心に,2022年から2024年にかけてのLLMとビデオゲームに関する76の論文をレビューする。
- 参考スコア(独自算出の注目度): 2.7195102129095003
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) hold interesting potential for the design,
development, and research of video games. Building on the decades of prior
research on generative AI in games, many researchers have sped to investigate
the power and potential of LLMs for games. Given the recent spike in
LLM-related research in games, there is already a wealth of relevant research
to survey. In order to capture a snapshot of the state of LLM research in
games, and to help lay the foundation for future work, we carried out an
initial scoping review of relevant papers published so far. In this paper, we
review 76 papers published between 2022 to early 2024 on LLMs and video games,
with key focus areas in game AI, game development, narrative, and game research
and reviews. Our paper provides an early state of the field and lays the
groundwork for future research and reviews on this topic.
- Abstract(参考訳): 大型言語モデル(LLM)は、ビデオゲームの設計、開発、研究に興味深い可能性を秘めている。
ゲームにおける生成AIに関するこれまでの研究に基づいて、多くの研究者が、ゲームにおけるLLMのパワーとポテンシャルについて調査している。
ゲームにおけるLSM関連の研究が最近急増していることを考えると、すでに調査すべき研究がたくさんある。
ゲームにおけるLLM研究の現状のスナップショットを取得し,今後の研究基盤の整備を支援するため,これまでに出版された関連論文のスコーピングレビューを行った。
本稿では,2022年から2024年初頭にかけて,ゲームai,ゲーム開発,物語,ゲーム研究,レビューといった分野を中心に,llmとビデオゲームに関する76の論文をレビューする。
本稿では,この分野の初期段階と今後の研究とレビューの土台を提示する。
関連論文リスト
- LLMs Assist NLP Researchers: Critique Paper (Meta-)Reviewing [106.45895712717612]
大規模言語モデル(LLM)は、様々な生成タスクにおいて顕著な汎用性を示している。
本研究は,NLP研究者を支援するLLMの話題に焦点を当てる。
私たちの知る限りでは、このような包括的な分析を提供するのはこれが初めてです。
論文 参考訳(メタデータ) (2024-06-24T01:30:22Z) - A Survey on Large Language Model-Based Game Agents [9.892954815419452]
ゲームエージェントの開発は、人工知能(AGI)に進む上で重要な役割を担っている
本稿では, LLMをベースとしたゲームエージェントについて, 総合的な視点から概観する。
論文 参考訳(メタデータ) (2024-04-02T15:34:18Z) - A Survey on Game Playing Agents and Large Models: Methods, Applications, and Challenges [29.74898680986507]
複雑なゲームプレイシナリオにおけるLM使用状況と課題を概観する。
我々は,ゲームにおけるLMの進歩に向けた将来的な研究の道のりについて,今後の展望を述べる。
論文 参考訳(メタデータ) (2024-03-15T12:37:12Z) - Large Language Models and Games: A Survey and Roadmap [3.691822987444594]
大規模言語モデル(LLM)は、ゲームを含む幅広いアプリケーションやドメインにおいて、顕著なポテンシャルを示している。
本稿では,ゲームにおけるLLMの様々な応用状況を調査し,ゲーム内でLLMが果たす役割について検討する。
論文 参考訳(メタデータ) (2024-02-28T19:09:08Z) - LLM-Based Agent Society Investigation: Collaboration and Confrontation
in Avalon Gameplay [57.202649879872624]
Avalonのゲームプレイにシームレスに適応する新しいフレームワークを提案する。
提案するフレームワークの中核は,エージェント間の効率的な通信と対話を可能にするマルチエージェントシステムである。
本研究は,適応的かつインテリジェントなエージェントを生成する上で,我々のフレームワークの有効性を示すものである。
論文 参考訳(メタデータ) (2023-10-23T14:35:26Z) - A Survey on Large Language Model based Autonomous Agents [105.2509166861984]
大規模言語モデル(LLM)は、人間レベルの知性を達成する上で、顕著な可能性を示している。
本稿では,LLMに基づく自律エージェントの分野を総合的な観点から体系的に検討する。
本稿では、社会科学、自然科学、工学の分野におけるLLMベースの自律エージェントの多様な応用について概観する。
論文 参考訳(メタデータ) (2023-08-22T13:30:37Z) - Technical Challenges of Deploying Reinforcement Learning Agents for Game
Testing in AAA Games [58.720142291102135]
本稿では,既存の自動ゲームテストソリューションに,スクリプト型ボットをベースとして,実験的な強化学習システムを追加する取り組みについて述べる。
ゲーム制作において強化学習を活用するためのユースケースを示し、ゲームのために同じ旅をしたいと思う人なら誰でも遭遇する最大の時間をカバーしています。
我々は、機械学習、特にゲーム生産において効果的なツールである強化学習を作るのに価値があり、必要であると考えるいくつかの研究指針を提案する。
論文 参考訳(メタデータ) (2023-07-19T18:19:23Z) - A Comprehensive Overview of Large Language Models [68.22178313875618]
大規模言語モデル(LLM)は、最近自然言語処理タスクにおいて顕著な機能を示した。
本稿では, LLM関連概念の幅広い範囲について, 既存の文献について概説する。
論文 参考訳(メタデータ) (2023-07-12T20:01:52Z) - SPRING: Studying the Paper and Reasoning to Play Games [102.5587155284795]
我々は,ゲーム本来の学術論文を読み取るための新しいアプローチ,SPRINGを提案し,大言語モデル(LLM)を通してゲームの説明とプレイの知識を利用する。
実験では,クラフトオープンワールド環境の設定下で,異なる形態のプロンプトによって引き起こされる文脈内「推論」の品質について検討した。
我々の実験は、LLMが一貫したチェーン・オブ・シークレットによって誘導されると、洗練された高レベル軌道の完成に大きな可能性があることを示唆している。
論文 参考訳(メタデータ) (2023-05-24T18:14:35Z) - A Bibliometric Review of Large Language Models Research from 2017 to
2023 [1.4190701053683017]
LLM(Large Language Model)は、自然言語処理(NLP)タスクにおいて優れた性能を示す言語モデルである。
本稿は,LLM研究の現在の姿を知るための研究者,実践者,政策立案者のロードマップとして機能する。
論文 参考訳(メタデータ) (2023-04-03T21:46:41Z) - "It's Unwieldy and It Takes a Lot of Time." Challenges and Opportunities
for Creating Agents in Commercial Games [20.63320049616144]
対戦相手、ノンプレイヤーキャラクター、チームメイトなどのゲームエージェントは、現代の多くのゲームにおいてプレイヤーの経験の中心となっている。
ゲーム産業で使用されるAI技術の展望がより広く機械学習(ML)を採用するように進化するにつれて、研究コミュニティは数十年にわたって業界内で栽培されているベストプラクティスからエージェントを作成することを学ぶことが不可欠である。
AAAスタジオ、インディースタジオ、産業研究所の17人のゲームエージェントクリエーターに、彼らがプロフェッショナル文学で経験した課題についてインタビューした。
論文 参考訳(メタデータ) (2020-09-01T16:21:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。