論文の概要: Neural Fractional Differential Equations
- arxiv url: http://arxiv.org/abs/2403.02737v1
- Date: Tue, 5 Mar 2024 07:45:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-06 15:36:28.349400
- Title: Neural Fractional Differential Equations
- Title(参考訳): 神経分数微分方程式
- Authors: C. Coelho, M. Fernanda P. Costa, L.L. Ferr\'as
- Abstract要約: FDE(Fractional Differential Equations)は、科学や工学において複雑なシステムをモデル化するための重要なツールである。
我々は、FDEをデータのダイナミックスに調整する新しいディープニューラルネットワークアーキテクチャであるNeural FDEを提案する。
- 参考スコア(独自算出の注目度): 3.072340427031969
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Fractional Differential Equations (FDEs) are essential tools for modelling
complex systems in science and engineering. They extend the traditional
concepts of differentiation and integration to non-integer orders, enabling a
more precise representation of processes characterised by non-local and
memory-dependent behaviours.
This property is useful in systems where variables do not respond to changes
instantaneously, but instead exhibit a strong memory of past interactions.
Having this in mind, and drawing inspiration from Neural Ordinary
Differential Equations (Neural ODEs), we propose the Neural FDE, a novel deep
neural network architecture that adjusts a FDE to the dynamics of data.
This work provides a comprehensive overview of the numerical method employed
in Neural FDEs and the Neural FDE architecture. The numerical outcomes suggest
that, despite being more computationally demanding, the Neural FDE may
outperform the Neural ODE in modelling systems with memory or dependencies on
past states, and it can effectively be applied to learn more intricate
dynamical systems.
- Abstract(参考訳): FDE(Fractional Differential Equations)は、科学や工学において複雑なシステムをモデル化するための重要なツールである。
彼らは従来の微分と統合の概念を非整数順序に拡張し、非局所的およびメモリ依存的な振る舞いによって特徴づけられるプロセスをより正確に表現できる。
この特性は、変数が即時に変化に応答せず、代わりに過去の相互作用の強い記憶を示すシステムで有用である。
このことを念頭に置いて、ニューラル正規微分方程式(Neural Ordinary Differential Equations,Neural ODEs)からインスピレーションを得て、FDEをデータのダイナミックスに調整する新しいディープニューラルネットワークアーキテクチャであるNeural FDEを提案する。
本稿では,ニューラルFDEとニューラルFDEアーキテクチャにおける数値手法について概観する。
数値的な結果は、より計算的に要求されているにもかかわらず、ニューラルFDEは過去の状態へのメモリや依存を持つモデリングシステムにおいてニューラルODEよりも優れており、より複雑な力学系を学ぶために効果的に適用できることを示している。
関連論文リスト
- Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
我々は、科学における機械学習応用のためのニューラルネットワーク設計であるメカニスティックニューラルネットワークを提案する。
新しいメカニスティックブロックを標準アーキテクチャに組み込んで、微分方程式を表現として明示的に学習する。
我々のアプローチの中心は、線形プログラムを解くために線形ODEを解く技術に着想を得た、新しい線形計画解法(NeuRLP)である。
論文 参考訳(メタデータ) (2024-02-20T15:23:24Z) - Embedding Capabilities of Neural ODEs [0.0]
動的システム理論を用いたニューラルODEの入出力関係について検討する。
我々は,低次元および高次元の異なるニューラルODEアーキテクチャにおける写像の正確な埋め込みについて,いくつかの結果を証明した。
論文 参考訳(メタデータ) (2023-08-02T15:16:34Z) - Neural Laplace: Learning diverse classes of differential equations in
the Laplace domain [86.52703093858631]
本稿では,これらすべてを含む多種多様な微分方程式(DE)を学習するための統一的な枠組みを提案する。
時間領域の力学をモデル化する代わりに、ラプラス領域でモデル化する。
The experiment, Neural Laplace shows excellent performance in modelling and extrapolating the trajectories of various class of DEs。
論文 参考訳(メタデータ) (2022-06-10T02:14:59Z) - On Neural Differential Equations [13.503274710499971]
特に、ニューラル微分方程式(NDE)は、ニューラルネットワークと微分方程式が同じコインの両側であることを示す。
NDEは生成問題、動的システム、時系列を扱うのに適している。
NDEは高容量関数近似、モデル空間への強い先行性、不規則なデータを扱う能力、メモリ効率、そして両サイドで利用可能な豊富な理論を提供する。
論文 参考訳(メタデータ) (2022-02-04T23:32:29Z) - NeuralPDE: Modelling Dynamical Systems from Data [0.44259821861543996]
本稿では、畳み込みニューラルネットワーク(CNN)と微分可能なODEソルバを組み合わせて動的システムをモデル化するモデルであるNeuralPDEを提案する。
標準PDEソルバで使用されるラインの手法は、CNNが任意のPDEダイナミクスをパラメトリズする自然な選択となる畳み込みを用いて表現できることを示す。
我々のモデルは、PDEの管理に関する事前の知識を必要とせずに、あらゆるデータに適用することができる。
論文 参考訳(メタデータ) (2021-11-15T10:59:52Z) - Accelerating Neural ODEs Using Model Order Reduction [0.0]
本稿では,ニューラルネットワークの圧縮と高速化に数学的モデルオーダー削減法が利用できることを示す。
我々は,ニューラルネットワークの層として必要な部分空間投影と操作を統合するニューラルODEを開発することで,新しい圧縮手法を実装した。
論文 参考訳(メタデータ) (2021-05-28T19:27:09Z) - Neural ODE Processes [64.10282200111983]
NDP(Neural ODE Process)は、Neural ODEの分布によって決定される新しいプロセスクラスである。
我々のモデルは,少数のデータポイントから低次元システムのダイナミクスを捉えることができることを示す。
論文 参考訳(メタデータ) (2021-03-23T09:32:06Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z) - Time Dependence in Non-Autonomous Neural ODEs [74.78386661760662]
時変重みを持つニューラルODEの新しいファミリーを提案する。
我々は、速度と表現能力の両面で、従来のニューラルODEの変形よりも優れていた。
論文 参考訳(メタデータ) (2020-05-05T01:41:46Z) - Stochasticity in Neural ODEs: An Empirical Study [68.8204255655161]
ニューラルネットワークの正規化(ドロップアウトなど)は、より高度な一般化を可能にするディープラーニングの広範な技術である。
トレーニング中のデータ拡張は、同じモデルの決定論的およびバージョンの両方のパフォーマンスを向上させることを示す。
しかし、データ拡張によって得られる改善により、経験的正規化の利得は完全に排除され、ニューラルODEとニューラルSDEの性能は無視される。
論文 参考訳(メタデータ) (2020-02-22T22:12:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。