論文の概要: Neural Variable-Order Fractional Differential Equation Networks
- arxiv url: http://arxiv.org/abs/2503.16207v1
- Date: Thu, 20 Mar 2025 14:54:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-21 16:33:44.493660
- Title: Neural Variable-Order Fractional Differential Equation Networks
- Title(参考訳): ニューラル可変次分数微分方程式ネットワーク
- Authors: Wenjun Cui, Qiyu Kang, Xuhao Li, Kai Zhao, Wee Peng Tay, Weihua Deng, Yidong Li,
- Abstract要約: NvoFDE(Neural Variable-Order Fractional Differential Equation Network)を導入する。
NvoFDEは、可変次分数微分と学習可能なニューラルネットワークを統合する、新しいニューラルネットワークフレームワークである。
以上の結果から,NvoFDEは従来の定階分数モデルや整数モデルよりも多くのタスクをこなすことが示された。
- 参考スコア(独自算出の注目度): 26.06048802504022
- License:
- Abstract: Neural differential equation models have garnered significant attention in recent years for their effectiveness in machine learning applications.Among these, fractional differential equations (FDEs) have emerged as a promising tool due to their ability to capture memory-dependent dynamics, which are often challenging to model with traditional integer-order approaches.While existing models have primarily focused on constant-order fractional derivatives, variable-order fractional operators offer a more flexible and expressive framework for modeling complex memory patterns. In this work, we introduce the Neural Variable-Order Fractional Differential Equation network (NvoFDE), a novel neural network framework that integrates variable-order fractional derivatives with learnable neural networks.Our framework allows for the modeling of adaptive derivative orders dependent on hidden features, capturing more complex feature-updating dynamics and providing enhanced flexibility. We conduct extensive experiments across multiple graph datasets to validate the effectiveness of our approach.Our results demonstrate that NvoFDE outperforms traditional constant-order fractional and integer models across a range of tasks, showcasing its superior adaptability and performance.
- Abstract(参考訳): ニューラルネットワーク微分方程式モデルは近年、機械学習の応用において大きな注目を集めている。例えば、分数微分方程式(FDE)は、従来の整数順序のアプローチでモデル化することがしばしば困難であるメモリ依存のダイナミクスを捉える能力から、将来性のあるツールとして登場した。
本研究では,学習可能なニューラルネットワークと可変次分数導関数を統合するニューラルネットワークフレームワークであるNeural Variable-Order Fractional Differential Equation Network (NvoFDE)を紹介する。
我々の結果は、NvoFDEが従来の定階分数モデルや整数モデルよりも多くのタスクで優れており、優れた適応性と性能を示していることを示している。
関連論文リスト
- A Data-Driven Framework for Discovering Fractional Differential Equations in Complex Systems [8.206685537936078]
本研究では、データから直接分数微分方程式(FDE)を発見するための段階的なデータ駆動フレームワークを提案する。
我々のフレームワークは、スパース観測とノイズ観測の分離と再構成のための代理モデルとしてディープニューラルネットワークを適用している。
本研究は, 凍結土壌のクリープ挙動に関する, 合成異常拡散データおよび実験データを含む, 各種データセットにわたるフレームワークの検証を行った。
論文 参考訳(メタデータ) (2024-12-05T08:38:30Z) - Projected Neural Differential Equations for Learning Constrained Dynamics [3.570367665112327]
本稿では,学習ベクトル場の射影を制約多様体の接空間に向けることで,ニューラル微分方程式を制約する新しい手法を提案する。
PNDEは、ハイパーパラメータを少なくしながら、既存のメソッドよりも優れています。
提案手法は、制約付き力学系のモデリングを強化する重要な可能性を示す。
論文 参考訳(メタデータ) (2024-10-31T06:32:43Z) - Neural Fractional Differential Equations [2.812395851874055]
FDE(Fractional Differential Equations)は、科学や工学において複雑なシステムをモデル化するための重要なツールである。
我々は、FDEをデータのダイナミックスに調整する新しいディープニューラルネットワークアーキテクチャであるNeural FDEを提案する。
論文 参考訳(メタデータ) (2024-03-05T07:45:29Z) - Learning PDE Solution Operator for Continuous Modeling of Time-Series [1.39661494747879]
この研究は、動的モデリング能力を改善する偏微分方程式(PDE)に基づくフレームワークを提案する。
時間的離散化の反復的操作や特定のグリッドを必要とせずに連続的に処理できるニューラル演算子を提案する。
我々のフレームワークは、現実世界のアプリケーションに容易に適用可能な、ニューラルネットワークの継続的な表現のための新しい方法を開く。
論文 参考訳(メタデータ) (2023-02-02T03:47:52Z) - Neural Laplace: Learning diverse classes of differential equations in
the Laplace domain [86.52703093858631]
本稿では,これらすべてを含む多種多様な微分方程式(DE)を学習するための統一的な枠組みを提案する。
時間領域の力学をモデル化する代わりに、ラプラス領域でモデル化する。
The experiment, Neural Laplace shows excellent performance in modelling and extrapolating the trajectories of various class of DEs。
論文 参考訳(メタデータ) (2022-06-10T02:14:59Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
本稿では,その潜在表現内でのシステム入力の変動をキャプチャする構造付き潜在ODEモデルを提案する。
静的変数仕様に基づいて,本モデルではシステムへの入力毎の変動要因を学習し,潜在空間におけるシステム入力の影響を分離する。
論文 参考訳(メタデータ) (2022-02-25T20:00:56Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
本稿では,疫病予測のための新しい物理インフォームドニューラルネットワークEINNを紹介する。
メカニスティックモデルによって提供される理論的柔軟性と、AIモデルによって提供されるデータ駆動表現性の両方を活用する方法について検討する。
論文 参考訳(メタデータ) (2022-02-21T18:59:03Z) - Approximate Latent Force Model Inference [1.3927943269211591]
潜在力モデルは、動的システムにおける推論のための純粋にデータ駆動ツールの解釈可能な代替手段を提供する。
ニューラルネットワークのアプローチは、モデルを数千のインスタンスにスケールし、高速で分散的な計算を可能にします。
論文 参考訳(メタデータ) (2021-09-24T09:55:00Z) - Closed-form Continuous-Depth Models [99.40335716948101]
連続深度ニューラルモデルは高度な数値微分方程式解法に依存している。
我々は,CfCネットワークと呼ばれる,記述が簡単で,少なくとも1桁高速な新しいモデル群を提示する。
論文 参考訳(メタデータ) (2021-06-25T22:08:51Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z) - Stochasticity in Neural ODEs: An Empirical Study [68.8204255655161]
ニューラルネットワークの正規化(ドロップアウトなど)は、より高度な一般化を可能にするディープラーニングの広範な技術である。
トレーニング中のデータ拡張は、同じモデルの決定論的およびバージョンの両方のパフォーマンスを向上させることを示す。
しかし、データ拡張によって得られる改善により、経験的正規化の利得は完全に排除され、ニューラルODEとニューラルSDEの性能は無視される。
論文 参考訳(メタデータ) (2020-02-22T22:12:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。