論文の概要: NeuralPDE: Modelling Dynamical Systems from Data
- arxiv url: http://arxiv.org/abs/2111.07671v1
- Date: Mon, 15 Nov 2021 10:59:52 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-16 17:55:04.759256
- Title: NeuralPDE: Modelling Dynamical Systems from Data
- Title(参考訳): neuralpde: データからの動的システムのモデリング
- Authors: Andrzej Dulny and Andreas Hotho and Anna Krause
- Abstract要約: 本稿では、畳み込みニューラルネットワーク(CNN)と微分可能なODEソルバを組み合わせて動的システムをモデル化するモデルであるNeuralPDEを提案する。
標準PDEソルバで使用されるラインの手法は、CNNが任意のPDEダイナミクスをパラメトリズする自然な選択となる畳み込みを用いて表現できることを示す。
我々のモデルは、PDEの管理に関する事前の知識を必要とせずに、あらゆるデータに適用することができる。
- 参考スコア(独自算出の注目度): 0.44259821861543996
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many physical processes such as weather phenomena or fluid mechanics are
governed by partial differential equations (PDEs). Modelling such dynamical
systems using Neural Networks is an emerging research field. However, current
methods are restricted in various ways: they require prior knowledge about the
governing equations, and are limited to linear or first-order equations. In
this work we propose NeuralPDE, a model which combines convolutional neural
networks (CNNs) with differentiable ODE solvers to model dynamical systems. We
show that the Method of Lines used in standard PDE solvers can be represented
using convolutions which makes CNNs the natural choice to parametrize arbitrary
PDE dynamics. Our model can be applied to any data without requiring any prior
knowledge about the governing PDE. We evaluate NeuralPDE on datasets generated
by solving a wide variety of PDEs, covering higher orders, non-linear equations
and multiple spatial dimensions.
- Abstract(参考訳): 気象現象や流体力学のような多くの物理過程は偏微分方程式(PDE)によって制御される。
ニューラルネットワークを用いたそのような動的システムのモデリングは、新たな研究分野である。
しかし、現在の手法は様々な方法で制限されており、それらは支配方程式に関する事前知識を必要とし、線形あるいは一階方程式に限定されている。
本研究では、畳み込みニューラルネットワーク(CNN)と微分可能なODEソルバを組み合わせて動的システムをモデル化するモデルであるNeuralPDEを提案する。
標準PDEソルバで使用されるラインの手法は、CNNが任意のPDEダイナミクスをパラメトリズする自然な選択となる畳み込みを用いて表現できることを示す。
我々のモデルは、PDEに関する事前の知識を必要とせずに、あらゆるデータに適用することができる。
我々は,多種多様なPDEを解くことで生成されたデータセット上でNeuralPDEを評価し,高次数,非線形方程式,複数空間次元を網羅した。
関連論文リスト
- Diffusion models as probabilistic neural operators for recovering unobserved states of dynamical systems [49.2319247825857]
拡散に基づく生成モデルは、ニューラル演算子に好適な多くの特性を示す。
本稿では,複数のタスクに適応可能な単一モデルを,トレーニング中のタスク間で交互に学習することを提案する。
論文 参考訳(メタデータ) (2024-05-11T21:23:55Z) - Neural Fractional Differential Equations [2.812395851874055]
FDE(Fractional Differential Equations)は、科学や工学において複雑なシステムをモデル化するための重要なツールである。
我々は、FDEをデータのダイナミックスに調整する新しいディープニューラルネットワークアーキテクチャであるNeural FDEを提案する。
論文 参考訳(メタデータ) (2024-03-05T07:45:29Z) - A Stable and Scalable Method for Solving Initial Value PDEs with Neural
Networks [52.5899851000193]
我々は,ネットワークの条件が悪くなるのを防止し,パラメータ数で時間線形に動作するODEベースのIPPソルバを開発した。
このアプローチに基づく現在の手法は2つの重要な問題に悩まされていることを示す。
まず、ODEに従うと、問題の条件付けにおいて制御不能な成長が生じ、最終的に許容できないほど大きな数値誤差が生じる。
論文 参考訳(メタデータ) (2023-04-28T17:28:18Z) - Learning Neural Constitutive Laws From Motion Observations for
Generalizable PDE Dynamics [97.38308257547186]
多くのNNアプローチは、支配的PDEと物質モデルの両方を暗黙的にモデル化するエンドツーエンドモデルを学ぶ。
PDEの管理はよく知られており、学習よりも明示的に実施されるべきである、と私たちは主張する。
そこで我々は,ネットワークアーキテクチャを利用したニューラル構成則(Neural Constitutive Laws,NCLaw)と呼ばれる新しいフレームワークを導入する。
論文 参考訳(メタデータ) (2023-04-27T17:42:24Z) - Neural Laplace: Learning diverse classes of differential equations in
the Laplace domain [86.52703093858631]
本稿では,これらすべてを含む多種多様な微分方程式(DE)を学習するための統一的な枠組みを提案する。
時間領域の力学をモデル化する代わりに、ラプラス領域でモデル化する。
The experiment, Neural Laplace shows excellent performance in modelling and extrapolating the trajectories of various class of DEs。
論文 参考訳(メタデータ) (2022-06-10T02:14:59Z) - Learning time-dependent PDE solver using Message Passing Graph Neural
Networks [0.0]
本稿では,メッセージパッシングモデルを用いた学習を通して,効率的なPDE解法を見つけるためのグラフニューラルネットワーク手法を提案する。
グラフを用いて、非構造化メッシュ上でPDEデータを表現し、メッセージパッシンググラフニューラルネットワーク(MPGNN)が支配方程式をパラメータ化できることを示す。
繰り返しグラフニューラルネットワークは,PDEに対する解の時間列を見つけることができることを示す。
論文 参考訳(メタデータ) (2022-04-15T21:10:32Z) - Continuous Convolutional Neural Networks: Coupled Neural PDE and ODE [1.1897857181479061]
本研究では、物理システムの隠れた力学を学習できる畳み込みニューラルネットワーク(CNN)の変種を提案する。
画像や時系列などの物理系を複数の層からなるシステムとして考えるのではなく、微分方程式(DE)の形でシステムをモデル化することができる。
論文 参考訳(メタデータ) (2021-10-30T21:45:00Z) - Deep Neural Network Modeling of Unknown Partial Differential Equations
in Nodal Space [1.8010196131724825]
本稿では、軌跡データを用いた未知時間依存偏微分方程式(PDE)のディープニューラルネットワーク(DNN)モデリングフレームワークを提案する。
本稿では,基礎となるPDEの進化演算子と直接対応するDNN構造を提案する。
トレーニングされたDNNは、構造のないグリッド上の未知のPDEの予測モデルを定義する。
論文 参考訳(メタデータ) (2021-06-07T13:27:09Z) - Neural ODE Processes [64.10282200111983]
NDP(Neural ODE Process)は、Neural ODEの分布によって決定される新しいプロセスクラスである。
我々のモデルは,少数のデータポイントから低次元システムのダイナミクスを捉えることができることを示す。
論文 参考訳(メタデータ) (2021-03-23T09:32:06Z) - dNNsolve: an efficient NN-based PDE solver [62.997667081978825]
ODE/PDEを解決するためにデュアルニューラルネットワークを利用するdNNsolveを紹介します。
我々は,dNNsolveが1,2,3次元の幅広いODE/PDEを解くことができることを示す。
論文 参考訳(メタデータ) (2021-03-15T19:14:41Z) - Neural-PDE: A RNN based neural network for solving time dependent PDEs [6.560798708375526]
偏微分方程式 (Partial differential equation, PDE) は、科学や工学における多くの問題を研究する上で重要な役割を果たしている。
本稿では,時間依存型PDEシステムのルールを自動的に学習する,Neural-PDEと呼ばれるシーケンス深層学習フレームワークを提案する。
我々の実験では、ニューラルPDEは20時間以内のトレーニングで効率よく力学を抽出し、正確な予測を行うことができる。
論文 参考訳(メタデータ) (2020-09-08T15:46:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。