Solving the Clustering Reasoning Problems by Modeling a Deep-Learning-Based Probabilistic Model
- URL: http://arxiv.org/abs/2403.03173v9
- Date: Fri, 23 May 2025 21:55:56 GMT
- Title: Solving the Clustering Reasoning Problems by Modeling a Deep-Learning-Based Probabilistic Model
- Authors: Ruizhuo Song, Beiming Yuan,
- Abstract summary: We introduce PMoC, a deep-learning-based probabilistic model, achieving high reasoning accuracy in the Bongard-Logo.<n>PMoC revitalizes the probabilistic approach, which has been relatively weak in visual abstract reasoning.
- Score: 1.7955614278088239
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Visual abstract reasoning problems pose significant challenges to the perception and cognition abilities of artificial intelligence algorithms, demanding deeper pattern recognition and inductive reasoning beyond mere identification of explicit image features. Research advancements in this field often provide insights and technical support for other similar domains. In this study, we introduce PMoC, a deep-learning-based probabilistic model, achieving high reasoning accuracy in the Bongard-Logo, which stands as one of the most challenging clustering reasoning tasks. PMoC is a novel approach for constructing probabilistic models based on deep learning, which is distinctly different from previous techniques. PMoC revitalizes the probabilistic approach, which has been relatively weak in visual abstract reasoning.
Related papers
- Dynamic Programming Techniques for Enhancing Cognitive Representation in Knowledge Tracing [125.75923987618977]
We propose the Cognitive Representation Dynamic Programming based Knowledge Tracing (CRDP-KT) model.<n>It is a dynamic programming algorithm to optimize cognitive representations based on the difficulty of the questions and the performance intervals between them.<n>It provides more accurate and systematic input features for subsequent model training, thereby minimizing distortion in the simulation of cognitive states.
arXiv Detail & Related papers (2025-06-03T14:44:48Z) - Exploring Energy Landscapes for Minimal Counterfactual Explanations: Applications in Cybersecurity and Beyond [3.6963146054309597]
Counterfactual explanations have emerged as a prominent method in Explainable Artificial Intelligence (XAI)
We present a novel framework that integrates perturbation theory and statistical mechanics to generate minimal counterfactual explanations.
Our approach systematically identifies the smallest modifications required to change a model's prediction while maintaining plausibility.
arXiv Detail & Related papers (2025-03-23T19:48:37Z) - Causality can systematically address the monsters under the bench(marks) [64.36592889550431]
Benchmarks are plagued by various biases, artifacts, or leakage.<n>Models may behave unreliably due to poorly explored failure modes.<n> causality offers an ideal framework to systematically address these challenges.
arXiv Detail & Related papers (2025-02-07T17:01:37Z) - Causal-Inspired Multitask Learning for Video-Based Human Pose Estimation [18.826857684901118]
We introduce a causal-temporal modeling framework consisting of two stages.
The first stage endows the model with causal-temporal modeling ability by introducing two self-supervision auxiliary tasks.
In the second stage, we argue that not all feature tokens contribute equally to pose estimation.
Our method outperforms state-of-the-art methods on three large-scale benchmark datasets.
arXiv Detail & Related papers (2025-01-24T09:45:16Z) - A Cognitive Paradigm Approach to Probe the Perception-Reasoning Interface in VLMs [3.2228025627337864]
This paper introduces a structured evaluation framework using Bongard Problems (BPs) to dissect the perception-reasoning interface in Vision-Language Models (VLMs)
We propose three distinct evaluation paradigms, mirroring human problem-solving strategies.
Our framework provides a valuable diagnostic tool, highlighting the need to enhance visual processing fidelity for achieving more robust and human-like visual intelligence in AI.
arXiv Detail & Related papers (2025-01-23T12:42:42Z) - Interpretable deformable image registration: A geometric deep learning perspective [9.13809412085203]
We present a theoretical foundation for designing an interpretable registration framework.
We formulate an end-to-end process that refines transformations in a coarse-to-fine fashion.
We conclude by showing significant improvement in performance metrics over state-of-the-art approaches.
arXiv Detail & Related papers (2024-12-17T19:47:10Z) - FFHFlow: A Flow-based Variational Approach for Learning Diverse Dexterous Grasps with Shape-Aware Introspection [19.308304984645684]
We introduce a novel model that can generate diverse grasps for a multi-fingered hand.
The proposed idea gains superior performance and higher run-time efficiency against strong baselines.
We also demonstrate substantial benefits of greater diversity for grasping objects in clutter and a confined workspace in the real world.
arXiv Detail & Related papers (2024-07-21T13:33:08Z) - Coding for Intelligence from the Perspective of Category [66.14012258680992]
Coding targets compressing and reconstructing data, and intelligence.
Recent trends demonstrate the potential homogeneity of these two fields.
We propose a novel problem of Coding for Intelligence from the category theory view.
arXiv Detail & Related papers (2024-07-01T07:05:44Z) - Verbalized Probabilistic Graphical Modeling with Large Language Models [8.961720262676195]
This work introduces a novel Bayesian prompting approach that facilitates training-free Bayesian inference with large language models.
Our results indicate that the model effectively enhances confidence elicitation and text generation quality, demonstrating its potential to improve AI language understanding systems.
arXiv Detail & Related papers (2024-06-08T16:35:31Z) - Uncertainty in latent representations of variational autoencoders optimized for visual tasks [4.919240908498475]
We study uncertainty representations in latent representations of variational auto-encoders (VAEs)
We show how a novel approach which we call explaining-away variational auto-encoders (EA-VAEs) fixes these issues.
EA-VAEs may prove useful both as models of perception in computational neuroscience and as inference tools in computer vision.
arXiv Detail & Related papers (2024-04-23T16:26:29Z) - Fiducial Focus Augmentation for Facial Landmark Detection [4.433764381081446]
We propose a novel image augmentation technique to enhance the model's understanding of facial structures.
We employ a Siamese architecture-based training mechanism with a Deep Canonical Correlation Analysis (DCCA)-based loss.
Our approach outperforms multiple state-of-the-art approaches across various benchmark datasets.
arXiv Detail & Related papers (2024-02-23T01:34:00Z) - A Survey on Transferability of Adversarial Examples across Deep Neural Networks [53.04734042366312]
adversarial examples can manipulate machine learning models into making erroneous predictions.
The transferability of adversarial examples enables black-box attacks which circumvent the need for detailed knowledge of the target model.
This survey explores the landscape of the adversarial transferability of adversarial examples.
arXiv Detail & Related papers (2023-10-26T17:45:26Z) - Learning to reason over visual objects [6.835410768769661]
We investigate the extent to which a general-purpose mechanism for processing visual scenes in terms of objects might help promote abstract visual reasoning.
We find that an inductive bias for object-centric processing may be a key component of abstract visual reasoning.
arXiv Detail & Related papers (2023-03-03T23:19:42Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
It remains unclear theoretically and empirically how latent variable models may facilitate learning, planning, and exploration to improve the sample efficiency of model-based reinforcement learning.
We provide a representation view of the latent variable models for state-action value functions, which allows both tractable variational learning algorithm and effective implementation of the optimism/pessimism principle.
In particular, we propose a computationally efficient planning algorithm with UCB exploration by incorporating kernel embeddings of latent variable models.
arXiv Detail & Related papers (2022-12-17T00:26:31Z) - Zero-shot visual reasoning through probabilistic analogical mapping [2.049767929976436]
We present visiPAM (visual Probabilistic Analogical Mapping), a model of visual reasoning that synthesizes two approaches.
We show that without any direct training, visiPAM outperforms a state-of-the-art deep learning model on an analogical mapping task.
In addition, visiPAM closely matches the pattern of human performance on a novel task involving mapping of 3D objects across disparate categories.
arXiv Detail & Related papers (2022-09-29T20:29:26Z) - Causal Reasoning Meets Visual Representation Learning: A Prospective
Study [117.08431221482638]
Lack of interpretability, robustness, and out-of-distribution generalization are becoming the challenges of the existing visual models.
Inspired by the strong inference ability of human-level agents, recent years have witnessed great effort in developing causal reasoning paradigms.
This paper aims to provide a comprehensive overview of this emerging field, attract attention, encourage discussions, bring to the forefront the urgency of developing novel causal reasoning methods.
arXiv Detail & Related papers (2022-04-26T02:22:28Z) - INFOrmation Prioritization through EmPOWERment in Visual Model-Based RL [90.06845886194235]
We propose a modified objective for model-based reinforcement learning (RL)
We integrate a term inspired by variational empowerment into a state-space model based on mutual information.
We evaluate the approach on a suite of vision-based robot control tasks with natural video backgrounds.
arXiv Detail & Related papers (2022-04-18T23:09:23Z) - A Unified Contrastive Energy-based Model for Understanding the
Generative Ability of Adversarial Training [64.71254710803368]
Adversarial Training (AT) is an effective approach to enhance the robustness of deep neural networks.
We demystify this phenomenon by developing a unified probabilistic framework, called Contrastive Energy-based Models (CEM)
We propose a principled method to develop adversarial learning and sampling methods.
arXiv Detail & Related papers (2022-03-25T05:33:34Z) - Deep Learning Reproducibility and Explainable AI (XAI) [9.13755431537592]
The nondeterminism of Deep Learning (DL) training algorithms and its influence on the explainability of neural network (NN) models are investigated.
To discuss the issue, two convolutional neural networks (CNN) have been trained and their results compared.
arXiv Detail & Related papers (2022-02-23T12:06:20Z) - Proactive Pseudo-Intervention: Causally Informed Contrastive Learning
For Interpretable Vision Models [103.64435911083432]
We present a novel contrastive learning strategy called it Proactive Pseudo-Intervention (PPI)
PPI leverages proactive interventions to guard against image features with no causal relevance.
We also devise a novel causally informed salience mapping module to identify key image pixels to intervene, and show it greatly facilitates model interpretability.
arXiv Detail & Related papers (2020-12-06T20:30:26Z) - Explain by Evidence: An Explainable Memory-based Neural Network for
Question Answering [41.73026155036886]
This paper proposes an explainable, evidence-based memory network architecture.
It learns to summarize the dataset and extract supporting evidences to make its decision.
Our model achieves state-of-the-art performance on two popular question answering datasets.
arXiv Detail & Related papers (2020-11-05T21:18:21Z) - Plausible Counterfactuals: Auditing Deep Learning Classifiers with
Realistic Adversarial Examples [84.8370546614042]
Black-box nature of Deep Learning models has posed unanswered questions about what they learn from data.
Generative Adversarial Network (GAN) and multi-objectives are used to furnish a plausible attack to the audited model.
Its utility is showcased within a human face classification task, unveiling the enormous potential of the proposed framework.
arXiv Detail & Related papers (2020-03-25T11:08:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.