Speed limits to the growth of Krylov complexity in open quantum systems
- URL: http://arxiv.org/abs/2403.03584v2
- Date: Thu, 13 Jun 2024 06:01:41 GMT
- Title: Speed limits to the growth of Krylov complexity in open quantum systems
- Authors: Aranya Bhattacharya, Pingal Pratyush Nath, Himanshu Sahu,
- Abstract summary: We introduce a universal limit to the growth of Krylov complexity in dissipative open quantum systems.
We also present the analytical results of Krylov complexity for characteristic behavior of Lanczos coefficients in dissipative systems.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, the propagation of information through quantum many-body systems, developed to study quantum chaos, have found many application from black holes to disordered spin systems. Among other quantitative tools, Krylov complexity has been explored as a diagnostic tool for information scrambling in quantum many-body systems. We introduce a universal limit to the growth of the Krylov complexity in dissipative open quantum systems by utilizing the uncertainty relation for non-hermitian operators. We also present the analytical results of Krylov complexity for characteristic behavior of Lanczos coefficients in dissipative systems. The validity of these results are demonstrated by explicit study of transverse-field Ising model under dissipative effects.
Related papers
- Krylov complexity as an order parameter for quantum chaotic-integrable transitions [0.0]
Krylov complexity has emerged as a new paradigm to characterize quantum chaos in many-body systems.
Recent insights have revealed that in quantum chaotic systems Krylov state complexity exhibits a distinct peak during time evolution.
We propose that this Krylov complexity peak (KCP) is a hallmark of quantum chaotic systems and suggest that its height could serve as an 'order parameter' for quantum chaos.
arXiv Detail & Related papers (2024-07-24T07:32:27Z) - Quantum Dynamics in Krylov Space: Methods and Applications [0.0]
The dynamics of quantum systems unfolds within a subspace of the state space or operator space, known as the Krylov space.
This review presents the use of Krylov subspace methods to provide a compact and computationally efficient description of quantum evolution.
arXiv Detail & Related papers (2024-05-15T18:00:09Z) - Spread complexity in saddle-dominated scrambling [0.0]
We study the spread complexity of the thermofield double state within emphintegrable systems that exhibit saddle-dominated scrambling.
Applying the Lanczos algorithm, our numerical investigation reveals that the spread complexity in these systems exhibits features reminiscent of emphchaotic systems.
arXiv Detail & Related papers (2023-12-19T20:41:14Z) - Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
The anticipated applications of quantum computers span across science and industry.
We present a survey of several potential application areas of quantum algorithms.
We outline the challenges and opportunities in each area in an "end-to-end" fashion.
arXiv Detail & Related papers (2023-10-04T17:53:55Z) - Krylov complexity and chaos in quantum mechanics [0.0]
We numerically evaluate Krylov complexity for operators and states.
We find a clear correlation between variances of Lanczos coefficients and classical Lyapunov exponents.
Our work provides a firm bridge between Krylov complexity and classical/quantum chaos.
arXiv Detail & Related papers (2023-05-26T06:32:45Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Dissipative quasi-particle picture for quadratic Markovian open quantum
systems [0.0]
Correlations between different regions of a quantum many-body system can be quantified.
For closed systems, analytical and numerical tools can accurately capture the time-evolution of subsystem entropies.
Here, we make progress by formulating a dissipative quasi-particle picture for a general class of noninteracting open quantum systems.
arXiv Detail & Related papers (2021-06-22T18:10:47Z) - Sensing quantum chaos through the non-unitary geometric phase [62.997667081978825]
We propose a decoherent mechanism for sensing quantum chaos.
The chaotic nature of a many-body quantum system is sensed by studying the implications that the system produces in the long-time dynamics of a probe coupled to it.
arXiv Detail & Related papers (2021-04-13T17:24:08Z) - Simulation of Collective Neutrino Oscillations on a Quantum Computer [117.44028458220427]
We present the first simulation of a small system of interacting neutrinos using current generation quantum devices.
We introduce a strategy to overcome limitations in the natural connectivity of the qubits and use it to track the evolution of entanglement in real-time.
arXiv Detail & Related papers (2021-02-24T20:51:25Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.