論文の概要: An L-BFGS-B approach for linear and nonlinear system identification under $\ell_1$- and group-Lasso regularization
- arxiv url: http://arxiv.org/abs/2403.03827v2
- Date: Wed, 17 Jul 2024 05:42:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-19 03:51:44.110046
- Title: An L-BFGS-B approach for linear and nonlinear system identification under $\ell_1$- and group-Lasso regularization
- Title(参考訳): L-BFGS-Bアプローチによる$\ell_1$-およびgroup-Lasso正則化に基づく線形および非線形システム同定
- Authors: Alberto Bemporad,
- Abstract要約: 線形および非線形離散時間状態空間モデルを同定するための非常に効率的な数値計算法を提案する。
提案手法のPython実装は、jax-sysidパッケージで利用可能である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we propose a very efficient numerical method based on the L-BFGS-B algorithm for identifying linear and nonlinear discrete-time state-space models, possibly under $\ell_1$- and group-Lasso regularization for reducing model complexity. For the identification of linear models, we show that, compared to classical linear subspace methods, the approach often provides better results, is much more general in terms of the loss and regularization terms used (such as penalties for enforcing system stability), and is also more stable from a numerical point of view. The proposed method not only enriches the existing set of linear system identification tools but can also be applied to identifying a very broad class of parametric nonlinear state-space models, including recurrent neural networks. We illustrate the approach on synthetic and experimental datasets and apply it to solve a challenging industrial robot benchmark for nonlinear multi-input/multi-output system identification. A Python implementation of the proposed identification method is available in the package jax-sysid, available at https://github.com/bemporad/jax-sysid.
- Abstract(参考訳): 本稿では,L-BFGS-Bアルゴリズムを用いて線形および非線形離散時間状態空間モデルを同定する手法を提案する。
線形モデルの同定において、古典線形部分空間法と比較して、この手法はより良い結果を与えることが多く、使用する損失項や正規化項(系の安定性を強制するペナルティなど)に関してより一般的であり、数値的な観点からもより安定であることを示す。
提案手法は,既存の線形システム同定ツールの集合を充実させるだけでなく,繰り返しニューラルネットワークを含むパラメトリック非線形状態空間モデルの非常に広いクラスを同定するためにも適用可能である。
本稿では, 合成および実験用データセットのアプローチを説明し, 非線形多入出力・複数出力システム同定のための産業用ロボットベンチマークの課題を解決するために応用する。
提案された識別メソッドのPython実装は、jax-sysidパッケージで利用可能であり、https://github.com/bemporad/jax-sysidで入手できる。
関連論文リスト
- Learning Controlled Stochastic Differential Equations [61.82896036131116]
本研究では,非一様拡散を伴う連続多次元非線形微分方程式のドリフト係数と拡散係数の両方を推定する新しい手法を提案する。
我々は、(L2)、(Linfty)の有限サンプル境界や、係数の正則性に適応する学習率を持つリスクメトリクスを含む、強力な理論的保証を提供する。
当社のメソッドはオープンソースPythonライブラリとして利用可能です。
論文 参考訳(メタデータ) (2024-11-04T11:09:58Z) - Exact identification of nonlinear dynamical systems by Trimmed Lasso [0.0]
非線形力学系の同定は非線形力学(SINDy)アルゴリズムのスパース同定によって一般化されている。
E-SINDyは有限でノイズの多いデータを扱うモデル同定のために提案された。
本稿では,モデル(TRIM)のロバスト同定のためのトリムラッソが,E-SINDyに対して,より厳しい雑音,有限データ,複数線形性の下で正確なリカバリを実現することを実証する。
論文 参考訳(メタデータ) (2023-08-03T17:37:18Z) - An Accelerated Doubly Stochastic Gradient Method with Faster Explicit
Model Identification [97.28167655721766]
本稿では、分散正規化損失最小化問題に対する2倍加速勾配降下法(ADSGD)を提案する。
まず、ADSGDが線形収束率を達成でき、全体的な計算複雑性を低減できることを示す。
論文 参考訳(メタデータ) (2022-08-11T22:27:22Z) - A Priori Denoising Strategies for Sparse Identification of Nonlinear
Dynamical Systems: A Comparative Study [68.8204255655161]
本研究では, 局所的およびグローバルな平滑化手法の性能と, 状態測定値の偏差について検討・比較する。
一般に,測度データセット全体を用いたグローバルな手法は,局所点の周辺に隣接するデータサブセットを用いる局所的手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-01-29T23:31:25Z) - Training Recurrent Neural Networks by Sequential Least Squares and the
Alternating Direction Method of Multipliers [0.20305676256390928]
本稿では、最適隠れネットワークパラメータを決定するために凸と2倍の差分損失と正規化項を用いることを提案する。
逐次最小二乗と交互方向乗算器を組み合わせる。
このアルゴリズムの性能は非線形システム同定ベンチマークで検証される。
論文 参考訳(メタデータ) (2021-12-31T08:43:04Z) - Sparse Bayesian Deep Learning for Dynamic System Identification [14.040914364617418]
本稿では,システム同定のためのディープニューラルネットワーク(DNN)の疎ベイズ処理を提案する。
提案されたベイズ的アプローチは、限界確率/モデル証拠近似による課題を緩和する原則的な方法を提供する。
提案手法の有効性を線形および非線形システム同定ベンチマークで示す。
論文 参考訳(メタデータ) (2021-07-27T16:09:48Z) - Sample-Efficient Reinforcement Learning Is Feasible for Linearly
Realizable MDPs with Limited Revisiting [60.98700344526674]
線形関数表現のような低複雑度モデルがサンプル効率のよい強化学習を可能にする上で重要な役割を果たしている。
本稿では,オンライン/探索的な方法でサンプルを描画するが,制御不能な方法で以前の状態をバックトラックし,再訪することができる新しいサンプリングプロトコルについて検討する。
この設定に合わせたアルゴリズムを開発し、特徴次元、地平線、逆の準最適ギャップと実際にスケールするサンプル複雑性を実現するが、状態/作用空間のサイズではない。
論文 参考訳(メタデータ) (2021-05-17T17:22:07Z) - Identification of Probability weighted ARX models with arbitrary domains [75.91002178647165]
PieceWise Affineモデルは、ハイブリッドシステムの他のクラスに対する普遍近似、局所線型性、同値性を保証する。
本研究では,任意の領域を持つ固有入力モデル(NPWARX)を用いたPieceWise Auto Regressiveの同定に着目する。
このアーキテクチャは、機械学習の分野で開発されたMixture of Expertの概念に従って考案された。
論文 参考訳(メタデータ) (2020-09-29T12:50:33Z) - Sparse Methods for Automatic Relevance Determination [0.0]
まず、自動妥当性決定(ARD)について検討し、スパースモデルを実現するために、追加の正規化やしきい値設定の必要性を解析的に実証する。
次に、正規化ベースとしきい値ベースという2つの手法のクラスについて論じる。
論文 参考訳(メタデータ) (2020-05-18T14:08:49Z) - Nonlinear system identification with regularized Tensor Network
B-splines [2.817412580574242]
The TNBS-NARX model is confirmed by the identified of the cascaded Watertank benchmark regular system。
標準的なデスクトップコンピュータ上で16次元のBスプライン面を4秒で識別しながら、最先端の性能を実現する。
論文 参考訳(メタデータ) (2020-03-17T09:22:20Z) - Multiscale Non-stationary Stochastic Bandits [83.48992319018147]
本稿では,非定常線形帯域問題に対して,Multiscale-LinUCBと呼ばれる新しいマルチスケール変更点検出法を提案する。
実験結果から,提案手法は非定常環境下での他の最先端アルゴリズムよりも優れていた。
論文 参考訳(メタデータ) (2020-02-13T00:24:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。