論文の概要: Artificial Intelligence Exploring the Patent Field
- arxiv url: http://arxiv.org/abs/2403.04105v1
- Date: Wed, 6 Mar 2024 23:17:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-08 15:43:09.898764
- Title: Artificial Intelligence Exploring the Patent Field
- Title(参考訳): 特許分野を探求する人工知能
- Authors: Lekang Jiang, Stephan Goetz
- Abstract要約: 高度な言語処理と機械学習技術は、特許と技術知識管理の分野で大幅な効率向上を約束する。
本稿では,特許関連課題と一般的な方法論の体系的概要について述べる。
本稿では,特許と特許関連データの基本的側面を紹介する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Advanced language-processing and machine-learning techniques promise massive
efficiency improvements in the previously widely manual field of patent and
technical knowledge management. This field presents large-scale and complex
data with very precise contents and language representation of those contents.
Particularly, patent texts can differ from mundane texts in various aspects,
which entails significant opportunities and challenges. This paper presents a
systematic overview of patent-related tasks and popular methodologies with a
special focus on evolving and promising techniques. Language processing and
particularly large language models as well as the recent boost of general
generative methods promise to become game changers in the patent field. The
patent literature and the fact-based argumentative procedures around patents
appear almost as an ideal use case. However, patents entail a number of
difficulties with which existing models struggle. The paper introduces
fundamental aspects of patents and patent-related data that affect technology
that wants to explore or manage them. It further reviews existing methods and
approaches and points out how important reliable and unbiased evaluation
metrics become. Although research has made substantial progress on certain
tasks, the performance across many others remains suboptimal, sometimes because
of either the special nature of patents and their language or inconsistencies
between legal terms and the everyday meaning of terms. Moreover, yet few
methods have demonstrated the ability to produce satisfactory text for specific
sections of patents. By pointing out key developments, opportunities, and gaps,
we aim to encourage further research and accelerate the advancement of this
field.
- Abstract(参考訳): 高度な言語処理と機械学習技術は、これまで広く使われていた特許と技術知識管理の分野において、大幅な効率向上を約束する。
この分野は、非常に正確な内容とそれらの内容の言語表現を持つ大規模で複雑なデータを提供する。
特に特許のテクストは、様々な面で日常的なテキストと異なり、大きな機会と課題が伴う。
本稿では,特許関連の課題と一般的な方法論を体系的に概観し,特に進化的かつ有望な技術に焦点をあてた。
言語処理、特に大きな言語モデル、そして最近のジェネレーティブメソッドの強化は、特許分野におけるゲームチェンジャーになることを約束している。
特許に関する文献と事実に基づく議論は、ほぼ理想的なユースケースのように見える。
しかし、特許には既存のモデルが苦労する多くの困難が伴う。
この論文は、特許を探求し、管理しようとする技術に影響を与える特許および特許関連データの基本的な側面を紹介している。
さらに、既存の方法やアプローチをレビューし、信頼性と偏りのない評価指標がいかに重要かを指摘する。
研究は特定のタスクでかなりの進歩を遂げているが、特許の特別な性質とその言語、あるいは法的用語と日常的な用語の意味の矛盾によって、他の多くの分野でのパフォーマンスは相変わらず最適である。
さらに、特許の特定の部分に満足なテキストを作成できることを実証する手法はほとんどない。
重要な発展、機会、ギャップを指摘することにより、さらなる研究を奨励し、この分野の進歩を加速することを目指している。
関連論文リスト
- Patent Novelty Assessment Accelerating Innovation and Patent Prosecution [0.873811641236639]
本報告では,特許ノベルティ評価とクレーム生成システムについて紹介する。
我々のシステムは、特許請求の複雑さをナビゲートし把握するための直感的なプラットフォームを大学生や研究者に提供する。
従来の分析システムとは異なり、我々のイニシアチブは独自に開発した中国語のAPIを利用して、非並列の精度と妥当性を保証する。
論文 参考訳(メタデータ) (2025-01-12T22:25:46Z) - EvoPat: A Multi-LLM-based Patents Summarization and Analysis Agent [0.0]
EvoPatはマルチLLMベースの特許エージェントで、ユーザーが検索生成(RAG)と高度な検索戦略を通じて特許を分析するのを支援する。
特許要約,比較分析,技術評価などのタスクにおいて,EvoPatがGPT-4より優れていることを示す。
論文 参考訳(メタデータ) (2024-12-24T02:21:09Z) - PatentEdits: Framing Patent Novelty as Textual Entailment [62.8514393375952]
このデータセットには105万例の修正が成功している。
我々は、文章を文単位でラベル付けするアルゴリズムを設計し、これらの編集がいかに大きな言語モデルで予測できるかを確立する。
引用引用文と起草文の文的含意を評価することは,どの発明的主張が変化しないか,あるいは先行技術に関して新規かを予測するのに特に有効であることを示す。
論文 参考訳(メタデータ) (2024-11-20T17:23:40Z) - Pap2Pat: Towards Automated Paper-to-Patent Drafting using Chunk-based Outline-guided Generation [13.242188189150987]
PAP2PATは、文書概要を含む1.8kの特許と特許のペアの新しい挑戦的なベンチマークである。
現在のオープンウェイト LLM とアウトライン誘導型ジェネレーションによる実験は,特許言語の本質的な反復性のために,論文からの情報を効果的に活用できるが,繰り返しに苦慮していることを示している。
論文 参考訳(メタデータ) (2024-10-09T15:52:48Z) - A Survey on RAG Meeting LLMs: Towards Retrieval-Augmented Large Language Models [71.25225058845324]
大規模言語モデル(LLM)は、言語理解と生成において革命的な能力を示している。
Retrieval-Augmented Generation (RAG)は、信頼性と最新の外部知識を提供する。
RA-LLMは、モデルの内部知識に頼るのではなく、外部および権威的な知識ベースを活用するために登場した。
論文 参考訳(メタデータ) (2024-05-10T02:48:45Z) - Unveiling Black-boxes: Explainable Deep Learning Models for Patent
Classification [48.5140223214582]
深部不透明ニューラルネットワーク(DNN)を利用した多ラベル特許分類のための最先端手法
レイヤワイド関連伝搬(Layer-wise Relevance propagation, LRP)を導入し, 特許の詳細な分類手法を提案する。
関連性スコアを考慮し、予測された特許クラスに関連する単語を視覚化して説明を生成する。
論文 参考訳(メタデータ) (2023-10-31T14:11:37Z) - PaperCard for Reporting Machine Assistance in Academic Writing [48.33722012818687]
2022年11月にOpenAIが発表した質問応答システムChatGPTは,学術論文作成に活用可能な,さまざまな機能を実証した。
これは学術における著者概念に関する批判的な疑問を提起する。
我々は、人間の著者が記述プロセスにおけるAIの使用を透過的に宣言するための文書である"PaperCard"というフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-07T14:28:04Z) - Source Attribution for Large Language Model-Generated Data [57.85840382230037]
合成テキストの生成に寄与したデータプロバイダを特定することで、ソース属性を実行できることが不可欠である。
我々はこの問題を透かしによって取り組めることを示した。
本稿では,アルゴリズム設計により,これらの重要な特性を満足する情報源属性フレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-01T12:02:57Z) - The Harvard USPTO Patent Dataset: A Large-Scale, Well-Structured, and
Multi-Purpose Corpus of Patent Applications [8.110699646062384]
ハーバードUSPTO特許データセット(HUPD)について紹介する。
450万件以上の特許文書があり、HUPDは同等のコーパスの2倍から3倍の大きさだ。
各アプリケーションのメタデータとすべてのテキストフィールドを提供することで、このデータセットは研究者が新しいNLPタスクセットを実行することを可能にする。
論文 参考訳(メタデータ) (2022-07-08T17:57:15Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
反現実的な説明は、望ましい結果を達成するために変更が必要な機能のセットをエンドユーザに提供することを目的としています。
現在のアプローチでは、提案された説明を達成するために必要な行動の実現可能性を考慮することはめったにない。
本稿では,非現実的説明を生成する手法として,潜時空間における干渉としての対実的説明(CEILS)を提案する。
論文 参考訳(メタデータ) (2021-06-14T20:48:48Z) - Summarization, Simplification, and Generation: The Case of Patents [0.0]
本調査は,特許の特徴と現状のNLPシステムへの疑問,b) 先行研究とその進化を批判的に提示すること,c) さらなる研究が必要である研究の方向性に注意を向けることを目的としたものである。
私たちの知る限りでは、特許領域における生成的アプローチに関する最初の調査である。
論文 参考訳(メタデータ) (2021-04-30T09:28:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。