Approaching the double-Heisenberg scaling sensitivity in the Tavis-Cummings model
- URL: http://arxiv.org/abs/2403.05279v2
- Date: Sat, 08 Feb 2025 04:19:50 GMT
- Title: Approaching the double-Heisenberg scaling sensitivity in the Tavis-Cummings model
- Authors: Yuguo Su, Tiantian Ying, Bo Liu, Xiao-Guang Wang,
- Abstract summary: We prove that the prototypical cavity quantum electrodynamics system, such as the Tavis-Cummings model, enables us to achieve double-HS precision.<n>Such a double sensibility can be experimentally realized by introducing either photon- or atom-number fluctuations through quantum squeezing.
- Score: 2.3944840403392185
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The pursuit of quantum-enhanced parameter estimations without the need for nonclassical initial states has long been driven by the goal of achieving experimentally accessible quantum metrology. In this work, employing a coherent averaging mechanism, we prove that the prototypical cavity quantum electrodynamics (QED) system, such as the Tavis-Cummings model, enables us to achieve not only the Heisenberg scaling (HS) precision in terms of the average photon number but also the double-HS sensitivity concerning both the average photon and atom numbers. Such a double sensibility can be experimentally realized by introducing either photon- or atom-number fluctuations through quantum squeezing. Furthermore, we discuss the methodology to achieve this double-HS precision in a realistic experimental circumstance where the squeezing is not perfect. Our results provide insights into understanding the coherent averaging mechanism for evaluating quantum-enhanced precision measurements and also present a usable metrological application of the cavity QED systems and superconducting circuits.
Related papers
- Quantum-amplified global-phase spectroscopy on an optical clock transition [5.423659793487148]
We adapt the holonomic quantum-gate concept to develop a novel Rabi-type "global-phase spectroscopy" (GPS)
We are able to demonstrate quantum-amplified time-reversal spectroscopy in an OLC that achieves 2.4(5) dB metrological gain without subtracting the laser noise.
Our technique is not limited by measurement resolution, scales easily owing to the global nature of entangling interaction, and exhibits high resilience to typical experimental imperfections.
arXiv Detail & Related papers (2025-04-02T17:18:18Z) - Experimental demonstration of Robust Amplitude Estimation on near-term quantum devices for chemistry applications [36.136619420474766]
This study explores hardware implementation of Robust Amplitude Estimation (RAE) on IBM quantum devices.
We demonstrate its application in quantum chemistry for one- and two-qubit Hamiltonian systems.
arXiv Detail & Related papers (2024-10-01T13:42:01Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Realization of versatile and effective quantum metrology using a single bosonic mode [0.0]
We present a versatile and on-demand protocol for deterministic parameter estimation.
With low average photon numbers of only up to 1.76, we achieve quantum-enhanced precision approaching the Heisenberg scaling.
We show that the gain or sensitivity range can be further enhanced on the fly by tailoring the input states.
arXiv Detail & Related papers (2024-03-22T05:47:47Z) - Nonlocality enhanced precision in quantum polarimetry via entangled photons [0.0]
We present a nonlocal quantum approach to polarimetry, leveraging the phenomenon of entanglement in photon pairs to enhance the precision in sample property determination.
We calculate the quantum Fisher information (QFI) and compare the accuracy and sensitivity for the cases of single sample channel versus two channel quantum state tomography measurements.
Such a quantum-enhanced nonlocal polarimetry holds promise for advancing diverse fields including material science, biomedical imaging, and remote sensing.
arXiv Detail & Related papers (2024-02-19T08:19:10Z) - High-dimensional quantum correlation measurements with an adaptively
gated hybrid single-photon camera [58.720142291102135]
We propose an adaptively-gated hybrid intensified camera (HIC) that combines a high spatial resolution sensor and a high temporal resolution detector.
With a spatial resolution of nearly 9 megapixels and nanosecond temporal resolution, this system allows for the realization of previously infeasible quantum optics experiments.
arXiv Detail & Related papers (2023-05-25T16:59:27Z) - Simultaneous quantum estimation of phase and indistinguishability in a
two photon interferometer [0.0]
We derive the quantum Fisher information matrix associated to the simultaneous estimation of an interferometric phase.
We perform an experiment based on a pair of photons with an unknown degree of indistinguishability entering a two-port interferometer.
arXiv Detail & Related papers (2023-03-27T18:56:03Z) - Estimating the concentration of chiral media with bright squeezed light [77.34726150561087]
We quantify the performance of Gaussian probes in estimating the concentration of chiral analytes.
Four-fold precision enhancement is achievable using state-of-the-art squeezing levels and intensity measurements.
arXiv Detail & Related papers (2022-08-21T17:18:10Z) - Two-mode Schr\"odinger-cat states with nonlinear optomechanics:
generation and verification of non-Gaussian mechanical entanglement [0.0]
We introduce a pulsed approach that utilizes the nonlinearity of the radiation-pressure interaction combined with photon-counting measurements.
We describe a protocol using subsequent pulsed interactions to verify the non-Gaussian entanglement generated.
Our scheme offers significant potential for further research and development that utilizes such non-Gaussian states for quantum-information and sensing applications.
arXiv Detail & Related papers (2021-09-17T12:58:52Z) - Quantum probes for the characterization of nonlinear media [50.591267188664666]
We investigate how squeezed probes may improve individual and joint estimation of the nonlinear coupling $tildelambda$ and of the nonlinearity order $zeta$.
We conclude that quantum probes represent a resource to enhance precision in the characterization of nonlinear media, and foresee potential applications with current technology.
arXiv Detail & Related papers (2021-09-16T15:40:36Z) - Enhanced nonlinear quantum metrology with weakly coupled solitons and
particle losses [58.720142291102135]
We offer an interferometric procedure for phase parameters estimation at the Heisenberg (up to 1/N) and super-Heisenberg scaling levels.
The heart of our setup is the novel soliton Josephson Junction (SJJ) system providing the formation of the quantum probe.
We illustrate that such states are close to the optimal ones even with moderate losses.
arXiv Detail & Related papers (2021-08-07T09:29:23Z) - Critical parametric quantum sensing [0.0]
We assess the metrological power of parametric Kerr resonators undergoing driven-dissipative transitions.
We show that the Heisenberg precision can be achieved with experimentally reachable parameters.
arXiv Detail & Related papers (2021-07-09T15:44:26Z) - Quantum metrology via chaos in a driven Bose-Josephson system [7.427384041389277]
Entanglement preparation and signal accumulation are essential for quantum parameter estimation.
We propose how to utilize chaotic dynamics in a periodically driven Bose-Josephson system for achieving a high-precision measurement.
arXiv Detail & Related papers (2020-07-13T07:05:27Z) - Estimation of pure quantum states in high dimension at the limit of
quantum accuracy through complex optimization and statistical inference [0.0]
Quantum tomography has become a key tool for the assessment of quantum states, processes, and devices.
In the case of mixed states of a single 2-dimensional quantum system adaptive methods have been recently introduced that achieve the theoretical accuracy limit deduced by Hayashi and Gill and Massar.
Here we present an adaptive tomographic method and show through numerical simulations, that it is difficult to approach the fundamental accuracy of pure quantum states in high dimension.
arXiv Detail & Related papers (2020-07-02T21:33:16Z) - In and out of equilibrium quantum metrology with mean-field quantum
criticality [68.8204255655161]
We study the influence that collective transition phenomena have on quantum metrological protocols.
The single spherical quantum spin (SQS) serves as stereotypical toy model that allows analytical insights on a mean-field level.
arXiv Detail & Related papers (2020-01-09T19:20:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.