論文の概要: FlowVQTalker: High-Quality Emotional Talking Face Generation through Normalizing Flow and Quantization
- arxiv url: http://arxiv.org/abs/2403.06375v3
- Date: Tue, 23 Apr 2024 03:35:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-24 19:06:16.353516
- Title: FlowVQTalker: High-Quality Emotional Talking Face Generation through Normalizing Flow and Quantization
- Title(参考訳): FlowVQTalker: 正規化フローと量子化による高品質感情会話顔生成
- Authors: Shuai Tan, Bin Ji, Ye Pan,
- Abstract要約: 本稿では,正規化フローとベクトル量子化モデルを用いて感情的な発話顔を生成することを提案する。
具体的には、顔の感情のダイナミクスを多感情階級の潜在空間にエンコードするフローベース係数生成器を開発する。
設計したベクトル量子化画像生成器は、コードクエリータスクとして表現力のある顔画像を作成する。
- 参考スコア(独自算出の注目度): 4.429892245774265
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generating emotional talking faces is a practical yet challenging endeavor. To create a lifelike avatar, we draw upon two critical insights from a human perspective: 1) The connection between audio and the non-deterministic facial dynamics, encompassing expressions, blinks, poses, should exhibit synchronous and one-to-many mapping. 2) Vibrant expressions are often accompanied by emotion-aware high-definition (HD) textures and finely detailed teeth. However, both aspects are frequently overlooked by existing methods. To this end, this paper proposes using normalizing Flow and Vector-Quantization modeling to produce emotional talking faces that satisfy both insights concurrently (FlowVQTalker). Specifically, we develop a flow-based coefficient generator that encodes the dynamics of facial emotion into a multi-emotion-class latent space represented as a mixture distribution. The generation process commences with random sampling from the modeled distribution, guided by the accompanying audio, enabling both lip-synchronization and the uncertain nonverbal facial cues generation. Furthermore, our designed vector-quantization image generator treats the creation of expressive facial images as a code query task, utilizing a learned codebook to provide rich, high-quality textures that enhance the emotional perception of the results. Extensive experiments are conducted to showcase the effectiveness of our approach.
- Abstract(参考訳): 感情的な会話の顔を生成することは、実用的だが挑戦的な試みである。
生命のようなアバターを作るには、人間の視点から2つの重要な洞察を導きます。
1) 音声と非決定論的顔力学の関連性は, 表情, まばたき, ポーズを包含し, 同期的かつ一対一なマッピングを提示すべきである。
2) バイブラント表現には感情認識型高精細感 (HD) 感触と細かな歯が伴うことが多い。
しかし、どちらの側面も既存の手法では見過ごされがちである。
そこで本研究では,フローとベクトル量子化の正規化モデルを用いて,両方の洞察を同時に満たす感情的な発話顔を生成する(FlowVQTalker)。
具体的には、混合分布を表す多感情級潜伏空間に顔の感情のダイナミクスを符号化するフローベース係数生成器を開発する。
生成プロセスは、モデル化された分布からランダムサンプリングを行い、伴奏音声によって誘導され、リップ同期と不確定な非言語顔手がかりの生成を可能にする。
さらに,提案設計したベクトル量子化画像生成装置は,表現的顔画像の生成をコードクエリタスクとして扱い,学習したコードブックを用いて,結果の感情的知覚を高めるリッチで高品質なテクスチャを提供する。
本手法の有効性を示すため,広範囲な実験を行った。
関連論文リスト
- Towards Localized Fine-Grained Control for Facial Expression Generation [54.82883891478555]
人間、特にその顔は、豊かな表現と意図を伝える能力のために、コンテンツ生成の中心である。
現在の生成モデルは、主に平らな中立表現と文字なしの笑顔を認証なしで生成する。
顔生成における表情制御におけるAU(アクションユニット)の利用を提案する。
論文 参考訳(メタデータ) (2024-07-25T18:29:48Z) - RealTalk: Real-time and Realistic Audio-driven Face Generation with 3D Facial Prior-guided Identity Alignment Network [48.95833484103569]
RealTalkは、音声から表現へのトランスフォーマーであり、高忠実な表現から顔へのフレームワークである。
第1成分として, 口唇運動に関連する個人性および個人内変動の特徴について考察した。
第2のコンポーネントでは、軽量な顔認証アライメント(FIA)モジュールを設計する。
この新しい設計により、高度で非効率な特徴アライメントモジュールに依存することなく、リアルタイムに細部を生成できる。
論文 参考訳(メタデータ) (2024-06-26T12:09:59Z) - Emotional Conversation: Empowering Talking Faces with Cohesive Expression, Gaze and Pose Generation [12.044308738509402]
3次元顔のランドマークを中間変数として用いた2段階の音声駆動音声顔生成フレームワークを提案する。
このフレームワークは、自己指導型学習を通じて、表現、視線、感情との協調的なアライメントを実現する。
我々のモデルは、視覚的品質と感情的アライメントの両方において、最先端のパフォーマンスを著しく向上させる。
論文 参考訳(メタデータ) (2024-06-12T06:00:00Z) - CSTalk: Correlation Supervised Speech-driven 3D Emotional Facial Animation Generation [13.27632316528572]
音声駆動の3D顔アニメーション技術は長年開発されてきたが、実用的応用には期待できない。
主な課題は、データ制限、唇のアライメント、表情の自然さである。
本稿では,顔の動きの異なる領域間の相関をモデル化し,生成モデルの訓練を監督し,現実的な表現を生成するCSTalkという手法を提案する。
論文 参考訳(メタデータ) (2024-04-29T11:19:15Z) - FaceChain-ImagineID: Freely Crafting High-Fidelity Diverse Talking Faces from Disentangled Audio [45.71036380866305]
我々は、音声を聴く人々の過程を抽象化し、意味のある手がかりを抽出し、単一の音声から動的に音声に一貫性のある発話顔を生成する。
ひとつはアイデンティティ、コンテンツ、感情をエンタングルドオーディオから効果的に切り離すことであり、もう一つは動画内多様性とビデオ間の一貫性を維持することである。
本稿では,3つのトレーニング可能なアダプタと凍結遅延拡散モデルとのフレキシブルな統合を含む,制御可能なコヒーレントフレーム生成を提案する。
論文 参考訳(メタデータ) (2024-03-04T09:59:48Z) - DREAM-Talk: Diffusion-based Realistic Emotional Audio-driven Method for
Single Image Talking Face Generation [75.90730434449874]
DREAM-Talkは2段階の拡散に基づく音声駆動フレームワークで,多彩な表現と正確な唇同期の同時生成に適したフレームワークである。
唇の動きと音声との強い相関を考慮し、音声特徴と感情スタイルを用いて、唇同期精度を向上して力学を洗練する。
定量的かつ質的にも、DREAM-Talkは表現性、リップシンクの精度、知覚品質の点で最先端の手法より優れている。
論文 参考訳(メタデータ) (2023-12-21T05:03:18Z) - GMTalker: Gaussian Mixture-based Audio-Driven Emotional talking video Portraits [37.12506653015298]
GMTalkerはガウスの混合合成による感情的な音声画像生成フレームワークである。
具体的には,よりフレキシブルな感情操作を実現するために,連続的かつ不整合な潜在空間を提案する。
また,多種多様な頭部ポーズ,瞬き,眼球運動を生成するために,大規模データセット上で事前訓練された正規化フローベースモーションジェネレータを導入する。
論文 参考訳(メタデータ) (2023-12-12T19:03:04Z) - Emotional Listener Portrait: Realistic Listener Motion Simulation in
Conversation [50.35367785674921]
リスナーヘッドジェネレーションは、話者から提供される情報を参照して、リスナーの非言語行動を生成することに集中する。
このような反応を生成する上で重要な課題は、会話中のきめ細かい表情の非決定論的性質である。
本稿では,複数の個別な動きコーパスの合成として,各顔の動きを微粒化処理する情緒的リスナー・ポートレート(ELP)を提案する。
ELPモデルは,学習分布からのサンプリングにより,与えられた話者に対する自然な,多様な応答を自動的に生成するだけでなく,所定の姿勢で制御可能な応答を生成することができる。
論文 参考訳(メタデータ) (2023-09-29T18:18:32Z) - High-fidelity Generalized Emotional Talking Face Generation with
Multi-modal Emotion Space Learning [43.09015109281053]
よりフレキシブルで汎用的な顔生成フレームワークを提案する。
具体的には、テキストプロンプトで感情スタイルを補完し、テキスト、画像、音声の感情のモダリティを統一された空間に埋め込むためにアラインド・マルチモーダル・感情エンコーダを使用する。
感情条件と音声シーケンスを構造表現に接続する感情認識型オーディオ-to-3DMM変換器を提案する。
論文 参考訳(メタデータ) (2023-05-04T05:59:34Z) - Emotionally Enhanced Talking Face Generation [52.07451348895041]
我々は、適切な表現でビデオを生成するために、カテゴリー的感情に基づく話し顔生成フレームワークを構築した。
モデルが任意のアイデンティティ、感情、言語に適応できることを示します。
提案するフレームワークはユーザフレンドリーなWebインターフェースを備えており,感情を伴う顔生成をリアルタイムに行うことができる。
論文 参考訳(メタデータ) (2023-03-21T02:33:27Z) - Audio-Driven Emotional Video Portraits [79.95687903497354]
Emotional Video Portraits(EVP)は、オーディオによって駆動される鮮やかな感情的なダイナミクスで高品質のビデオポートレートを合成するシステムです。
具体的には,音声を2つの分離空間に分解するクロスリコンストラクテッド感情不等角化手法を提案する。
ゆがんだ特徴によって、動的2D感情的な顔のランドマークは推定することができます。
次に,最終的な高品質映像画像を生成するために,ターゲット適応型顔合成手法を提案する。
論文 参考訳(メタデータ) (2021-04-15T13:37:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。