3DRef: 3D Dataset and Benchmark for Reflection Detection in RGB and
Lidar Data
- URL: http://arxiv.org/abs/2403.06538v1
- Date: Mon, 11 Mar 2024 09:29:44 GMT
- Title: 3DRef: 3D Dataset and Benchmark for Reflection Detection in RGB and
Lidar Data
- Authors: Xiting Zhao and S\"oren Schwertfeger
- Abstract summary: This paper introduces the first large-scale 3D reflection detection dataset containing more than 50,000 aligned samples of multi-return Lidar, RGB images, and 2D/3D semantic labels.
The proposed dataset advances reflection detection by providing a comprehensive testbed with precise global alignment, multi-modal data, and diverse reflective objects and materials.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reflective surfaces present a persistent challenge for reliable 3D mapping
and perception in robotics and autonomous systems. However, existing reflection
datasets and benchmarks remain limited to sparse 2D data. This paper introduces
the first large-scale 3D reflection detection dataset containing more than
50,000 aligned samples of multi-return Lidar, RGB images, and 2D/3D semantic
labels across diverse indoor environments with various reflections. Textured 3D
ground truth meshes enable automatic point cloud labeling to provide precise
ground truth annotations. Detailed benchmarks evaluate three Lidar point cloud
segmentation methods, as well as current state-of-the-art image segmentation
networks for glass and mirror detection. The proposed dataset advances
reflection detection by providing a comprehensive testbed with precise global
alignment, multi-modal data, and diverse reflective objects and materials. It
will drive future research towards reliable reflection detection. The dataset
is publicly available at http://3dref.github.io
Related papers
- What Matters in Range View 3D Object Detection [15.147558647138629]
Lidar-based perception pipelines rely on 3D object detection models to interpret complex scenes.
We achieve state-of-the-art amongst range-view 3D object detection models without using multiple techniques proposed in past range-view literature.
arXiv Detail & Related papers (2024-07-23T18:42:37Z) - VFMM3D: Releasing the Potential of Image by Vision Foundation Model for Monocular 3D Object Detection [80.62052650370416]
monocular 3D object detection holds significant importance across various applications, including autonomous driving and robotics.
In this paper, we present VFMM3D, an innovative framework that leverages the capabilities of Vision Foundation Models (VFMs) to accurately transform single-view images into LiDAR point cloud representations.
arXiv Detail & Related papers (2024-04-15T03:12:12Z) - V-DETR: DETR with Vertex Relative Position Encoding for 3D Object
Detection [73.37781484123536]
We introduce a highly performant 3D object detector for point clouds using the DETR framework.
To address the limitation, we introduce a novel 3D Relative Position (3DV-RPE) method.
We show exceptional results on the challenging ScanNetV2 benchmark.
arXiv Detail & Related papers (2023-08-08T17:14:14Z) - CAGroup3D: Class-Aware Grouping for 3D Object Detection on Point Clouds [55.44204039410225]
We present a novel two-stage fully sparse convolutional 3D object detection framework, named CAGroup3D.
Our proposed method first generates some high-quality 3D proposals by leveraging the class-aware local group strategy on the object surface voxels.
To recover the features of missed voxels due to incorrect voxel-wise segmentation, we build a fully sparse convolutional RoI pooling module.
arXiv Detail & Related papers (2022-10-09T13:38:48Z) - CMR3D: Contextualized Multi-Stage Refinement for 3D Object Detection [57.44434974289945]
We propose Contextualized Multi-Stage Refinement for 3D Object Detection (CMR3D) framework.
Our framework takes a 3D scene as input and strives to explicitly integrate useful contextual information of the scene.
In addition to 3D object detection, we investigate the effectiveness of our framework for the problem of 3D object counting.
arXiv Detail & Related papers (2022-09-13T05:26:09Z) - The Devil is in the Task: Exploiting Reciprocal Appearance-Localization
Features for Monocular 3D Object Detection [62.1185839286255]
Low-cost monocular 3D object detection plays a fundamental role in autonomous driving.
We introduce a Dynamic Feature Reflecting Network, named DFR-Net.
We rank 1st among all the monocular 3D object detectors in the KITTI test set.
arXiv Detail & Related papers (2021-12-28T07:31:18Z) - An Overview Of 3D Object Detection [21.159668390764832]
We propose a framework that uses both RGB and point cloud data to perform multiclass object recognition.
We use the recently released nuScenes dataset---a large-scale dataset contains many data formats---to training and evaluate our proposed architecture.
arXiv Detail & Related papers (2020-10-29T14:04:50Z) - Single-Shot 3D Detection of Vehicles from Monocular RGB Images via
Geometry Constrained Keypoints in Real-Time [6.82446891805815]
We propose a novel 3D single-shot object detection method for detecting vehicles in monocular RGB images.
Our approach lifts 2D detections to 3D space by predicting additional regression and classification parameters.
We test our approach on different datasets for autonomous driving and evaluate it using the challenging KITTI 3D Object Detection and the novel nuScenes Object Detection benchmarks.
arXiv Detail & Related papers (2020-06-23T15:10:19Z) - Stereo RGB and Deeper LIDAR Based Network for 3D Object Detection [40.34710686994996]
3D object detection has become an emerging task in autonomous driving scenarios.
Previous works process 3D point clouds using either projection-based or voxel-based models.
We propose the Stereo RGB and Deeper LIDAR framework which can utilize semantic and spatial information simultaneously.
arXiv Detail & Related papers (2020-06-09T11:19:24Z) - BirdNet+: End-to-End 3D Object Detection in LiDAR Bird's Eye View [117.44028458220427]
On-board 3D object detection in autonomous vehicles often relies on geometry information captured by LiDAR devices.
We present a fully end-to-end 3D object detection framework that can infer oriented 3D boxes solely from BEV images.
arXiv Detail & Related papers (2020-03-09T15:08:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.