論文の概要: Trustworthy Partial Label Learning with Out-of-distribution Detection
- arxiv url: http://arxiv.org/abs/2403.06681v1
- Date: Mon, 11 Mar 2024 12:56:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-12 19:04:42.136048
- Title: Trustworthy Partial Label Learning with Out-of-distribution Detection
- Title(参考訳): 分散検出を用いた信頼度の高い部分ラベル学習
- Authors: Jintao Huang and Yiu-Ming Cheung
- Abstract要約: 部分ラベル学習(PLL)は、明瞭にラベル付けされたデータから学習し、画像認識などの分野でうまく応用されている。
従来のメソッドはクローズドワールドの仮定に依存しており、オープンワールドのシナリオでは制限される可能性がある。
本研究は,OODフレームワーク(OOD framework)と呼ばれる新しい手法を導入し,そのフレームワークにOOD(Out-of-Distribution)検出を組み込んだ。
提案する-OOD フレームワークは,有効性が高く,既存のモデルよりも優れており,その優位性と有効性を示している。
- 参考スコア(独自算出の注目度): 37.53260795079566
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Partial Label Learning (PLL) grapples with learning from ambiguously labelled
data, and it has been successfully applied in fields such as image recognition.
Nevertheless, traditional PLL methods rely on the closed-world assumption,
which can be limiting in open-world scenarios and negatively impact model
performance and generalization. To tackle these challenges, our study
introduces a novel method called PLL-OOD, which is the first to incorporate
Out-of-Distribution (OOD) detection into the PLL framework. PLL-OOD
significantly enhances model adaptability and accuracy by merging
self-supervised learning with partial label loss and pioneering the
Partial-Energy (PE) score for OOD detection. This approach improves data
feature representation and effectively disambiguates candidate labels, using a
dynamic label confidence matrix to refine predictions. The PE score, adjusted
by label confidence, precisely identifies OOD instances, optimizing model
training towards in-distribution data. This innovative method markedly boosts
PLL model robustness and performance in open-world settings. To validate our
approach, we conducted a comprehensive comparative experiment combining the
existing state-of-the-art PLL model with multiple OOD scores on the CIFAR-10
and CIFAR-100 datasets with various OOD datasets. The results demonstrate that
the proposed PLL-OOD framework is highly effective and effectiveness
outperforms existing models, showcasing its superiority and effectiveness.
- Abstract(参考訳): 部分ラベル学習(PLL)は、明瞭にラベル付けされたデータから学習し、画像認識などの分野でうまく応用されている。
それでも、従来のPLL法はクローズドワールドの仮定に依存しており、これはオープンワールドのシナリオで制限され、モデルの性能と一般化に悪影響を及ぼす可能性がある。
これらの課題に対処するため,PLLフレームワークにOOD検出を組み込んだ新しい手法であるPLL-OODを紹介した。
PLL-OODは、自己教師付き学習と部分ラベル損失を併用し、OOD検出のための部分エネルギー(PE)スコアを開拓することにより、モデルの適応性と精度を著しく向上させる。
このアプローチはデータ特徴表現を改善し、動的ラベル信頼行列を用いて予測を洗練する。
ラベル信頼度によって調整されたPEスコアは、OODインスタンスを正確に識別し、分散データに対するモデルトレーニングを最適化する。
この革新的な手法は、オープンワールド環境でのPLLモデルの堅牢性と性能を著しく向上させる。
我々は,既存のPLLモデルとCIFAR-10およびCIFAR-100データセットの複数のOODスコアを組み合わせた総合的な比較実験を行った。
その結果,提案するPLL-OODフレームワークは有効性が高く,既存のモデルよりも優れており,その優位性と有効性を示している。
関連論文リスト
- COOD: Concept-based Zero-shot OOD Detection [12.361461338978732]
ゼロショットマルチラベルOOD検出フレームワークであるCOODを紹介する。
ラベルごとに肯定的概念と否定的概念の両方で意味空間を豊かにすることにより、我々のアプローチは複雑なラベル依存をモデル化する。
提案手法は既存のアプローチよりも優れており,VOCとデータセットの両方で平均95%のAUROCを実現している。
論文 参考訳(メタデータ) (2024-11-15T08:15:48Z) - Envisioning Outlier Exposure by Large Language Models for Out-of-Distribution Detection [71.93411099797308]
オープンワールドシナリオに機械学習モデルをデプロイする場合、アウト・オブ・ディストリビューション(OOD)サンプルは不可欠である。
本稿では,大規模言語モデル(LLM)の専門知識と推論能力を活用して,この制約に対処することを提案する。
EOEは、遠、近、きめ細かいOOD検出など、さまざまなタスクに一般化することができる。
EOEは様々なOODタスクで最先端のパフォーマンスを実現し、ImageNet-1Kデータセットに効果的にスケールできる。
論文 参考訳(メタデータ) (2024-06-02T17:09:48Z) - How Does Unlabeled Data Provably Help Out-of-Distribution Detection? [63.41681272937562]
in-distribution (ID) とout-of-distribution (OOD) の両データの不均一性のため、未ラベルの in-the-wild データは非自明である。
本稿では,理論的保証と実証的有効性の両方を提供する新たな学習フレームワークであるSAL(Separate And Learn)を紹介する。
論文 参考訳(メタデータ) (2024-02-05T20:36:33Z) - Model-free Test Time Adaptation for Out-Of-Distribution Detection [62.49795078366206]
我々はtextbfDistribution textbfDetection (abbr) のための非パラメトリックテスト時間 textbfAdaptation フレームワークを提案する。
Abbrは、オンラインテストサンプルを使用して、テスト中のモデル適応、データ分散の変更への適応性を向上させる。
複数のOOD検出ベンチマークにおける包括的実験により,abrの有効性を示す。
論文 参考訳(メタデータ) (2023-11-28T02:00:47Z) - Class Relevance Learning For Out-of-distribution Detection [16.029229052068]
本稿では,OOD検出に適したクラス関連学習手法を提案する。
本手法は,OODパイプライン内のクラス間関係を戦略的に活用し,総合的なクラス関連学習フレームワークを確立する。
論文 参考訳(メタデータ) (2023-09-21T08:38:21Z) - AUTO: Adaptive Outlier Optimization for Online Test-Time OOD Detection [81.49353397201887]
オープンソースアプリケーションに機械学習モデルをデプロイするには、アウト・オブ・ディストリビューション(OOD)検出が不可欠だ。
我々は、未ラベルのオンラインデータをテスト時に直接利用してOOD検出性能を向上させる、テスト時OOD検出と呼ばれる新しいパラダイムを導入する。
本稿では,入出力フィルタ,IDメモリバンク,意味的に一貫性のある目的からなる適応外乱最適化(AUTO)を提案する。
論文 参考訳(メタデータ) (2023-03-22T02:28:54Z) - Training OOD Detectors in their Natural Habitats [31.565635192716712]
アウト・オブ・ディストリビューション(OOD)検出は、野生にデプロイされた機械学習モデルにとって重要である。
近年の手法では,OOD検出の改善のために補助外乱データを用いてモデルを正規化している。
我々は、自然にIDとOODの両方のサンプルで構成される野生の混合データを活用する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2022-02-07T15:38:39Z) - Robust Out-of-distribution Detection for Neural Networks [51.19164318924997]
既存の検出機構は, 分布内およびOOD入力の評価において, 極めて脆弱であることを示す。
ALOE と呼ばれる実効性のあるアルゴリズムを提案する。このアルゴリズムは,逆向きに構築された逆数と外数の両方の例にモデルを公開することにより,堅牢なトレーニングを行う。
論文 参考訳(メタデータ) (2020-03-21T17:46:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。