論文の概要: DNGaussian: Optimizing Sparse-View 3D Gaussian Radiance Fields with
Global-Local Depth Normalization
- arxiv url: http://arxiv.org/abs/2403.06912v1
- Date: Mon, 11 Mar 2024 17:02:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-12 18:09:10.054836
- Title: DNGaussian: Optimizing Sparse-View 3D Gaussian Radiance Fields with
Global-Local Depth Normalization
- Title(参考訳): DNGaussian:グローバルローカル深さ正規化によるスパースビュー3次元ガウス放射場最適化
- Authors: Jiahe Li, Jiawei Zhang, Xiao Bai, Jin Zheng, Xin Ning, Jun Zhou, Lin
Gu
- Abstract要約: 放射場は、スパース入力ビューから新しいビューを合成する際、顕著な性能を示してきたが、一般的な方法は、高いトレーニングコストと遅い推論速度に悩まされている。
本稿では,DNGaussianについて紹介する。DNGaussianは3次元ガウス放射場に基づく奥行き規則化フレームワークで,低コストでリアルタイムかつ高品質なノベルショットビュー合成を提供する。
- 参考スコア(独自算出の注目度): 22.551814289323627
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Radiance fields have demonstrated impressive performance in synthesizing
novel views from sparse input views, yet prevailing methods suffer from high
training costs and slow inference speed. This paper introduces DNGaussian, a
depth-regularized framework based on 3D Gaussian radiance fields, offering
real-time and high-quality few-shot novel view synthesis at low costs. Our
motivation stems from the highly efficient representation and surprising
quality of the recent 3D Gaussian Splatting, despite it will encounter a
geometry degradation when input views decrease. In the Gaussian radiance
fields, we find this degradation in scene geometry primarily lined to the
positioning of Gaussian primitives and can be mitigated by depth constraint.
Consequently, we propose a Hard and Soft Depth Regularization to restore
accurate scene geometry under coarse monocular depth supervision while
maintaining a fine-grained color appearance. To further refine detailed
geometry reshaping, we introduce Global-Local Depth Normalization, enhancing
the focus on small local depth changes. Extensive experiments on LLFF, DTU, and
Blender datasets demonstrate that DNGaussian outperforms state-of-the-art
methods, achieving comparable or better results with significantly reduced
memory cost, a $25 \times$ reduction in training time, and over $3000 \times$
faster rendering speed.
- Abstract(参考訳): radianceフィールドは、少ない入力ビューから新しいビューを合成する素晴らしい性能を示しているが、一般的な方法は高いトレーニングコストと遅い推論速度に苦しめられている。
本稿では,DNGaussianについて紹介する。DNGaussianは3次元ガウス放射場に基づく奥行き規則化フレームワークで,低コストでリアルタイムかつ高品質なノベルショットビュー合成を提供する。
我々のモチベーションは、入力ビューが減少すると幾何劣化に遭遇するにもかかわらず、最近の3次元ガウス散乱の非常に効率的な表現と驚くべき品質に由来する。
ガウス放射場において、シーン幾何学におけるこの劣化は主にガウス原始体の位置決めに関係しており、深さ制約によって緩和できる。
その結果,粗い単眼深度監視下での正確なシーン形状を再現し,きめ細かい色調を維持しつつ,ハード・ソフト深度正規化を提案する。
より精細な幾何再構成を実現するため,グローバル・ローカル深度正規化を導入し,小さな局所深度変化に焦点をあてる。
LLFF、DTU、Blenderのデータセットに対する大規模な実験により、DNGaussianは最先端の手法よりも優れており、メモリコストが大幅に削減され、25 \times$トレーニング時間が短縮され、3000 \times$レンダリング速度が向上した。
関連論文リスト
- Beyond Gaussians: Fast and High-Fidelity 3D Splatting with Linear Kernels [51.08794269211701]
本稿では,ガウスカーネルを線形カーネルに置き換えて,よりシャープで高精度な結果を得る3Dリニアスティング(DLS)を提案する。
3DLSは、最先端の忠実さと正確さを示し、ベースライン3DGSよりも30%のFPS改善を実現している。
論文 参考訳(メタデータ) (2024-11-19T11:59:54Z) - GUS-IR: Gaussian Splatting with Unified Shading for Inverse Rendering [83.69136534797686]
GUS-IRは、粗く光沢のある表面を特徴とする複雑なシーンの逆レンダリング問題に対処するために設計された新しいフレームワークである。
本稿では、逆レンダリング、フォワードシェーディング、遅延シェーディングに広く使われている2つの顕著なシェーディング技術を分析し、比較することから始める。
両手法の利点を組み合わせた統合シェーディングソリューションを提案する。
論文 参考訳(メタデータ) (2024-11-12T01:51:05Z) - CityGaussianV2: Efficient and Geometrically Accurate Reconstruction for Large-Scale Scenes [53.107474952492396]
CityGaussianV2は大規模なシーン再構築のための新しいアプローチである。
分解段階の密度化・深さ回帰手法を実装し, ぼやけたアーチファクトを除去し, 収束を加速する。
本手法は, 視覚的品質, 幾何学的精度, ストレージ, トレーニングコストの両立を図っている。
論文 参考訳(メタデータ) (2024-11-01T17:59:31Z) - GaussianRoom: Improving 3D Gaussian Splatting with SDF Guidance and Monocular Cues for Indoor Scene Reconstruction [3.043712258792239]
ニューラルネットワークSDFと3DGSを統合した統合フレームワークを提案する。
このフレームワークには学習可能なニューラルネットワークSDFフィールドが組み込まれており、ガウスの密度化と刈り取りをガイドしている。
本手法は, 表面再構成と新しいビュー合成の両面において, 最先端の性能を実現する。
論文 参考訳(メタデータ) (2024-05-30T03:46:59Z) - Gaussian Opacity Fields: Efficient Adaptive Surface Reconstruction in Unbounded Scenes [50.92217884840301]
Gaussian Opacity Fields (GOF)は、シーンにおける効率的で高品質で適応的な表面再構成のための新しいアプローチである。
GOFは3Dガウスのレイトレーシングに基づくボリュームレンダリングに由来する。
GOFは、表面再構成と新しいビュー合成において、既存の3DGSベースの手法を超越している。
論文 参考訳(メタデータ) (2024-04-16T17:57:19Z) - DN-Splatter: Depth and Normal Priors for Gaussian Splatting and Meshing [19.437747560051566]
カラー画像の勾配に基づく適応的な深度損失を提案し、様々なベースライン上での深度推定と新しいビュー合成結果を改善した。
我々の単純かつ効果的な正則化技術はガウス表現からの直接メッシュ抽出を可能にし、屋内シーンのより物理的に正確な再構築を可能にする。
論文 参考訳(メタデータ) (2024-03-26T16:00:31Z) - FSGS: Real-Time Few-shot View Synthesis using Gaussian Splatting [58.41056963451056]
本稿では,3次元ガウススプラッティングに基づく数ショットビュー合成フレームワークを提案する。
このフレームワークは3つのトレーニングビューでリアルタイムおよびフォトリアリスティックなビュー合成を可能にする。
FSGSは、さまざまなデータセットの精度とレンダリング効率の両方で最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2023-12-01T09:30:02Z) - Scaffold-GS: Structured 3D Gaussians for View-Adaptive Rendering [71.44349029439944]
最近の3次元ガウス散乱法は、最先端のレンダリング品質と速度を達成している。
局所的な3Dガウス分布にアンカーポイントを用いるScaffold-GSを導入する。
提案手法は,高品質なレンダリングを実現しつつ,冗長なガウスを効果的に削減できることを示す。
論文 参考訳(メタデータ) (2023-11-30T17:58:57Z) - GaussianShader: 3D Gaussian Splatting with Shading Functions for
Reflective Surfaces [45.15827491185572]
反射面を持つシーンにおけるニューラルレンダリングを強化するために, 簡易シェーディング機能を3次元ガウスに応用する新しい手法を提案する。
実験の結果、ガウシアンシェーダーは効率と視覚的品質のバランスを保っていることがわかった。
論文 参考訳(メタデータ) (2023-11-29T17:22:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。