論文の概要: FSGS: Real-Time Few-shot View Synthesis using Gaussian Splatting
- arxiv url: http://arxiv.org/abs/2312.00451v2
- Date: Sun, 16 Jun 2024 03:30:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-19 09:12:15.842795
- Title: FSGS: Real-Time Few-shot View Synthesis using Gaussian Splatting
- Title(参考訳): FSGS:ガウススプラッティングを用いた実時間Few-shotビュー合成
- Authors: Zehao Zhu, Zhiwen Fan, Yifan Jiang, Zhangyang Wang,
- Abstract要約: 本稿では,3次元ガウススプラッティングに基づく数ショットビュー合成フレームワークを提案する。
このフレームワークは3つのトレーニングビューでリアルタイムおよびフォトリアリスティックなビュー合成を可能にする。
FSGSは、さまざまなデータセットの精度とレンダリング効率の両方で最先端のパフォーマンスを達成する。
- 参考スコア(独自算出の注目度): 58.41056963451056
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Novel view synthesis from limited observations remains an important and persistent task. However, high efficiency in existing NeRF-based few-shot view synthesis is often compromised to obtain an accurate 3D representation. To address this challenge, we propose a few-shot view synthesis framework based on 3D Gaussian Splatting that enables real-time and photo-realistic view synthesis with as few as three training views. The proposed method, dubbed FSGS, handles the extremely sparse initialized SfM points with a thoughtfully designed Gaussian Unpooling process. Our method iteratively distributes new Gaussians around the most representative locations, subsequently infilling local details in vacant areas. We also integrate a large-scale pre-trained monocular depth estimator within the Gaussians optimization process, leveraging online augmented views to guide the geometric optimization towards an optimal solution. Starting from sparse points observed from limited input viewpoints, our FSGS can accurately grow into unseen regions, comprehensively covering the scene and boosting the rendering quality of novel views. Overall, FSGS achieves state-of-the-art performance in both accuracy and rendering efficiency across diverse datasets, including LLFF, Mip-NeRF360, and Blender. Project website: https://zehaozhu.github.io/FSGS/.
- Abstract(参考訳): 限られた観測からの新しい視点合成は依然として重要かつ永続的な課題である。
しかし、既存のNeRFベースの小ショットビュー合成の高効率性は、正確な3D表現を得るためにしばしば妥協される。
この課題に対処するために,3次元ガウススプラッティングに基づく数ショットビュー合成フレームワークを提案する。
提案手法はFSGSと呼ばれ,極端に疎い初期化SfM点を思慮深く設計したガウスアンアンプールプロセスで処理する。
提案手法は,最も代表的な場所を中心に新しいガウシアンを反復的に配布し,その後,空き地に局所的な詳細を埋め込む。
我々はまた、ガウス最適化プロセスに大規模な事前学習された単眼深度推定器を統合し、オンライン拡張ビューを活用し、幾何最適化を最適解へ導く。
限られた入力視点から観察されるスパースポイントから始めると、FSGSは正確に見えない領域に成長し、シーンを包括的にカバーし、新しいビューのレンダリング品質を高めることができる。
全体として、FSGSはLLFF、Mip-NeRF360、Blenderなど、さまざまなデータセットの精度とレンダリング効率の両方で最先端のパフォーマンスを実現している。
プロジェクトサイト: https://zehaozhu.github.io/FSGS/。
関連論文リスト
- GPS-Gaussian+: Generalizable Pixel-wise 3D Gaussian Splatting for Real-Time Human-Scene Rendering from Sparse Views [67.34073368933814]
スパースビューカメラ設定下での高解像度画像レンダリングのための一般化可能なガウススプラッティング手法を提案する。
我々は,人間のみのデータや人景データに基づいてガウスパラメータ回帰モジュールをトレーニングし,深度推定モジュールと共同で2次元パラメータマップを3次元空間に引き上げる。
いくつかのデータセットに対する実験により、我々の手法はレンダリング速度を超越しながら最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2024-11-18T08:18:44Z) - PF3plat: Pose-Free Feed-Forward 3D Gaussian Splatting [54.7468067660037]
PF3platは、設計選択を検証した包括的なアブレーション研究によってサポートされた、すべてのベンチマークに新しい最先端を設定します。
本フレームワークは,3DGSの高速,スケーラビリティ,高品質な3D再構成とビュー合成機能を活用している。
論文 参考訳(メタデータ) (2024-10-29T15:28:15Z) - MVGS: Multi-view-regulated Gaussian Splatting for Novel View Synthesis [22.80370814838661]
ボリュームレンダリングにおける最近の研究、例えばNeRFや3D Gaussian Splatting (3DGS)は、レンダリング品質と効率を大幅に向上させた。
4つの重要な貢献を具現化した新しい3DGS最適化手法を提案する。
論文 参考訳(メタデータ) (2024-10-02T23:48:31Z) - MVPGS: Excavating Multi-view Priors for Gaussian Splatting from Sparse Input Views [27.47491233656671]
新規ビュー合成(NVS)は3次元視覚アプリケーションにおいて重要な課題である。
我々は,3次元ガウススプラッティングに基づくマルチビュー先行を探索する数ショットNVS法である textbfMVPGS を提案する。
実験により,提案手法はリアルタイムレンダリング速度で最先端の性能を実現することを示す。
論文 参考訳(メタデータ) (2024-09-22T05:07:20Z) - LoopSparseGS: Loop Based Sparse-View Friendly Gaussian Splatting [18.682864169561498]
LoopSparseGSは、疎結合なビュー合成タスクのためのループベースの3DGSフレームワークである。
Sparse-Friended Smpling (SFS) 戦略を導入し,ガウス楕円体を過剰に処理し,画素誤差が大きくなった。
4つのデータセットの実験により、LoopSparseGSはスパース・インプット・ノベルビューの合成において既存の最先端の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2024-08-01T03:26:50Z) - GaussianRoom: Improving 3D Gaussian Splatting with SDF Guidance and Monocular Cues for Indoor Scene Reconstruction [3.043712258792239]
ニューラルネットワークSDFと3DGSを統合した統合フレームワークを提案する。
このフレームワークには学習可能なニューラルネットワークSDFフィールドが組み込まれており、ガウスの密度化と刈り取りをガイドしている。
本手法は, 表面再構成と新しいビュー合成の両面において, 最先端の性能を実現する。
論文 参考訳(メタデータ) (2024-05-30T03:46:59Z) - MVSGaussian: Fast Generalizable Gaussian Splatting Reconstruction from Multi-View Stereo [54.00987996368157]
MVSGaussianは、Multi-View Stereo(MVS)から導かれる新しい一般化可能な3次元ガウス表現手法である。
MVSGaussianは、シーンごとにより良い合成品質でリアルタイムレンダリングを実現する。
論文 参考訳(メタデータ) (2024-05-20T17:59:30Z) - CoherentGS: Sparse Novel View Synthesis with Coherent 3D Gaussians [18.42203035154126]
2次元画像空間で制御できる構造付きガウス表現を導入する。
次に、ガウス群、特にその位置を制約し、最適化中に独立に動くのを防ぐ。
我々は,様々な場面における最先端のスパースビュー NeRF ベースのアプローチと比較して,顕著な改善を示した。
論文 参考訳(メタデータ) (2024-03-28T15:27:13Z) - Scaffold-GS: Structured 3D Gaussians for View-Adaptive Rendering [71.44349029439944]
最近の3次元ガウス散乱法は、最先端のレンダリング品質と速度を達成している。
局所的な3Dガウス分布にアンカーポイントを用いるScaffold-GSを導入する。
提案手法は,高品質なレンダリングを実現しつつ,冗長なガウスを効果的に削減できることを示す。
論文 参考訳(メタデータ) (2023-11-30T17:58:57Z) - GS-IR: 3D Gaussian Splatting for Inverse Rendering [71.14234327414086]
3次元ガウス散乱(GS)に基づく新しい逆レンダリング手法GS-IRを提案する。
我々は、未知の照明条件下で撮影された多視点画像からシーン形状、表面物質、環境照明を推定するために、新しいビュー合成のための最高のパフォーマンス表現であるGSを拡張した。
フレキシブルかつ表現力のあるGS表現は、高速かつコンパクトな幾何再構成、フォトリアリスティックな新規ビュー合成、有効物理ベースレンダリングを実現する。
論文 参考訳(メタデータ) (2023-11-26T02:35:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。