論文の概要: Grid Monitoring and Protection with Continuous Point-on-Wave
Measurements and Generative AI
- arxiv url: http://arxiv.org/abs/2403.06942v1
- Date: Mon, 11 Mar 2024 17:28:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-12 17:55:50.043069
- Title: Grid Monitoring and Protection with Continuous Point-on-Wave
Measurements and Generative AI
- Title(参考訳): 連続点波計測と生成AIによるグリッドモニタリングと保護
- Authors: Lang Tong, Xinyi Wang, Qing Zhao
- Abstract要約: 本稿では,汎用人工知能(AI)と機械学習の最近の進歩を活用する次世代グリッド監視制御システムについて述べる。
AIを用いたデータ圧縮と故障検出による連続点波計測(CPOW)のストリーミングに基づくモニタリングと制御のフレームワークについて論じる。
- 参考スコア(独自算出の注目度): 47.19756484695248
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Purpose This article presents a case for a next-generation grid monitoring
and control system, leveraging recent advances in generative artificial
intelligence (AI), machine learning, and statistical inference. Advancing
beyond earlier generations of wide-area monitoring systems built upon
supervisory control and data acquisition (SCADA) and synchrophasor
technologies, we argue for a monitoring and control framework based on the
streaming of continuous point-on-wave (CPOW) measurements with AI-powered data
compression and fault detection.
Methods and Results: The architecture of the proposed design originates from
the Wiener-Kallianpur innovation representation of a random process that
transforms causally a stationary random process into an innovation sequence
with independent and identically distributed random variables. This work
presents a generative AI approach that (i) learns an innovation autoencoder
that extracts innovation sequence from CPOW time series, (ii) compresses the
CPOW streaming data with innovation autoencoder and subband coding, and (iii)
detects unknown faults and novel trends via nonparametric sequential hypothesis
testing.
Conclusion: This work argues that conventional monitoring using SCADA and
phasor measurement unit (PMU) technologies is ill-suited for a future grid with
deep penetration of inverter-based renewable generations and distributed energy
resources. A monitoring system based on CPOW data streaming and AI data
analytics should be the basic building blocks for situational awareness of a
highly dynamic future grid.
- Abstract(参考訳): 本稿は, 次世代グリッド監視制御システムにおいて, 生成人工知能(AI), 機械学習, 統計的推論の最近の進歩を活用した事例である。
監視制御とデータ取得(SCADA)とシンクロファクタ技術に基づいて構築された広域監視システムの初期世代を超えて、我々は、AIによるデータ圧縮と故障検出による連続点波計測(CPOW)のストリーミングに基づく監視と制御のフレームワークを論じる。
方法と結果: 提案された設計のアーキテクチャは、定常ランダム過程を独立かつ同一の分散ランダム変数を持つ革新シーケンスに変換するランダムプロセスのウィナー・カリアンプルの革新表現に由来する。
この研究は、生成的AIアプローチを示します。
(i)cpow時系列からイノベーションシーケンスを抽出するイノベーションオートエンコーダを学習する。
(ii)イノベーションオートエンコーダとサブバンド符号化でcpowストリーミングデータを圧縮する。
3)非パラメトリックシーケンシャル仮説テストにより未知の欠陥や新しい傾向を検出する。
結論: 本研究は, 従来のSCADAとPMU技術を用いたモニタリングが, インバータベースの再生可能世代と分散エネルギー資源を深く浸透させた将来のグリッドに不適合であると主張している。
CPOWデータストリーミングとAIデータ分析に基づく監視システムは、非常にダイナミックな未来グリッドの状況認識のための基本的なビルディングブロックであるべきです。
関連論文リスト
- SafePowerGraph-HIL: Real-Time HIL Validation of Heterogeneous GNNs for Bridging Sim-to-Real Gap in Power Grids [6.788629099241222]
我々は,HypersimをモデルとしたIEEE 9-busシステム上でHILシミュレーションを利用するSafePowerGraph-HILフレームワークを開発した。
Hypersimの機能を活用することで、複雑なグリッドインタラクションをシミュレートし、HGNNトレーニングの重要なパラメータをキャプチャする堅牢なデータセットを提供します。
訓練されたHGNNはその後、様々なシステム条件下で新たに生成されたデータを用いて検証され、電力系統状態の予測精度とロバスト性を示す。
論文 参考訳(メタデータ) (2025-01-21T13:36:38Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
タスク指向エッジコンピューティングは、データ分析をエッジにシフトすることで、この問題に対処する。
既存の手法は、高いモデル性能と低いリソース消費のバランスをとるのに苦労している。
ニューラルネットワークアーキテクチャを最適化する新しい協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T19:02:54Z) - Multivariate Physics-Informed Convolutional Autoencoder for Anomaly Detection in Power Distribution Systems with High Penetration of DERs [0.0]
本稿では,物理インフォームド・コンボリューション・オートエンコーダ(PIConvAE)モデルを提案する。
提案モデルの性能評価は,カリフォルニア州リバーサイドのIEEE 123バスシステムと実世界の給電システムを用いて行った。
論文 参考訳(メタデータ) (2024-06-05T04:28:57Z) - An Unsupervised Adversarial Autoencoder for Cyber Attack Detection in Power Distribution Grids [0.0]
本稿では,不均衡配電系統における偽データインジェクション攻撃(FDIA)を検出するために,教師なし対向オートエンコーダ(AAE)モデルを提案する。
提案手法は,オートエンコーダの構造における長期記憶(LSTM)を用いて,時系列計測における時間依存性をキャプチャする。
IEEE 13-bus と 123-bus で、歴史的気象データと歴史的実世界の負荷データを用いてテストされている。
論文 参考訳(メタデータ) (2024-03-31T01:20:01Z) - Towards Long-Term Time-Series Forecasting: Feature, Pattern, and
Distribution [57.71199089609161]
長期的時系列予測(LTTF)は、風力発電計画など、多くのアプリケーションで需要が高まっている。
トランスフォーマーモデルは、高い計算自己認識機構のため、高い予測能力を提供するために採用されている。
LTTFの既存の手法を3つの面で区別する,Conformer という,効率的なTransformer ベースモデルを提案する。
論文 参考訳(メタデータ) (2023-01-05T13:59:29Z) - Hybrid AI-based Anomaly Detection Model using Phasor Measurement Unit
Data [0.41998444721319217]
ファサー計測装置(PMU)を用いて電力システムを監視することは、将来有望な技術の一つである。
サイバー物理的相互作用の増加は、利点と欠点の両方をもたらし、そこでは、測定データの異常の形で欠点の1つが生まれる。
本稿では,PMUデータにおける異常検出の様々な手法に基づくハイブリッドAIベースモデルを開発することを目的とする。
論文 参考訳(メタデータ) (2022-09-21T11:22:01Z) - Ranking-Based Physics-Informed Line Failure Detection in Power Grids [66.0797334582536]
ライン障害のリアルタイムかつ正確な検出は、極端な気象の影響を緩和し、緊急制御を活性化する最初のステップである。
電力収支方程式は、非線形性、極端な事象における発生の不確実性の増加、グリッドオブザーバビリティの欠如は、従来のデータ駆動障害検出手法の効率を損なう。
本稿では,グリッドトポロジ情報を利用した物理インフォームドライン故障検出器(FIELD)を提案する。
論文 参考訳(メタデータ) (2022-08-31T18:19:25Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
クオーロタのシステムダイナミクスを正確にモデル化することは、アジャイル、安全、安定したナビゲーションを保証する上で非常に重要です。
本稿では,ロボットの経験から,四重項系の力学を純粋に学習するための新しい物理インスパイアされた時間畳み込みネットワーク(PI-TCN)を提案する。
提案手法は,スパース時間的畳み込みと高密度フィードフォワード接続の表現力を組み合わせて,正確なシステム予測を行う。
論文 参考訳(メタデータ) (2022-06-07T13:51:35Z) - Robust, Deep, and Reinforcement Learning for Management of Communication
and Power Networks [6.09170287691728]
本論文は、まず、分散不確実性や逆データに対して汎用機械学習モデルを堅牢にするための原則的手法を開発する。
次に、この堅牢なフレームワークの上に構築し、グラフメソッドによる堅牢な半教師付き学習を設計します。
この論文の第2部は、次世代の有線および無線ネットワークの可能性を完全に解き放つことを意図している。
論文 参考訳(メタデータ) (2022-02-08T05:49:06Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
本稿では,観測力学を強制線形系としてモデル化した新しい負荷予測手法を提案する。
固有線型力学の利用は、解釈可能性やパーシモニーの観点から、多くの望ましい性質を提供することを示す。
電力グリッドからの負荷データを用いたテストケースの結果が提示される。
論文 参考訳(メタデータ) (2020-10-08T20:25:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。