Grid Monitoring and Protection with Continuous Point-on-Wave
Measurements and Generative AI
- URL: http://arxiv.org/abs/2403.06942v1
- Date: Mon, 11 Mar 2024 17:28:46 GMT
- Title: Grid Monitoring and Protection with Continuous Point-on-Wave
Measurements and Generative AI
- Authors: Lang Tong, Xinyi Wang, Qing Zhao
- Abstract summary: This article presents a case for a next-generation grid monitoring and control system, leveraging recent advances in generative artificial intelligence (AI) and machine learning.
We argue for a monitoring and control framework based on the streaming of continuous point-on-wave (CPOW) measurements with AI-powered data compression and fault detection.
- Score: 47.19756484695248
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Purpose This article presents a case for a next-generation grid monitoring
and control system, leveraging recent advances in generative artificial
intelligence (AI), machine learning, and statistical inference. Advancing
beyond earlier generations of wide-area monitoring systems built upon
supervisory control and data acquisition (SCADA) and synchrophasor
technologies, we argue for a monitoring and control framework based on the
streaming of continuous point-on-wave (CPOW) measurements with AI-powered data
compression and fault detection.
Methods and Results: The architecture of the proposed design originates from
the Wiener-Kallianpur innovation representation of a random process that
transforms causally a stationary random process into an innovation sequence
with independent and identically distributed random variables. This work
presents a generative AI approach that (i) learns an innovation autoencoder
that extracts innovation sequence from CPOW time series, (ii) compresses the
CPOW streaming data with innovation autoencoder and subband coding, and (iii)
detects unknown faults and novel trends via nonparametric sequential hypothesis
testing.
Conclusion: This work argues that conventional monitoring using SCADA and
phasor measurement unit (PMU) technologies is ill-suited for a future grid with
deep penetration of inverter-based renewable generations and distributed energy
resources. A monitoring system based on CPOW data streaming and AI data
analytics should be the basic building blocks for situational awareness of a
highly dynamic future grid.
Related papers
- SafePowerGraph-HIL: Real-Time HIL Validation of Heterogeneous GNNs for Bridging Sim-to-Real Gap in Power Grids [6.788629099241222]
We develop a SafePowerGraph-HIL framework that utilizes HIL simulations on the IEEE 9-bus system, modeled in Hypersim.
By leveraging Hypersim's capabilities, we simulate complex grid interactions, providing a robust dataset that captures critical parameters for HGNN training.
The trained HGNN is subsequently validated using newly generated data under varied system conditions, demonstrating accuracy and robustness in predicting power system states.
arXiv Detail & Related papers (2025-01-21T13:36:38Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - Multivariate Physics-Informed Convolutional Autoencoder for Anomaly Detection in Power Distribution Systems with High Penetration of DERs [0.0]
This paper proposes a physics-informed convolutional autoencoder (PIConvAE) model to detect cyber anomalies in power distribution systems with unbalanced configurations and high penetration of DERs.
The performance of the proposed model is evaluated on two unbalanced power distribution grids, IEEE 123-bus system and a real-world feeder in Riverside, CA.
arXiv Detail & Related papers (2024-06-05T04:28:57Z) - An Unsupervised Adversarial Autoencoder for Cyber Attack Detection in Power Distribution Grids [0.0]
This paper proposes an unsupervised adversarial autoencoder (AAE) model to detect false data injection attacks (FDIAs) in unbalanced power distribution grids.
The proposed method utilizes long short-term memory (LSTM) in the structure of the autoencoder to capture the temporal dependencies in the time-series measurements.
It is tested on IEEE 13-bus and 123-bus systems with historical meteorological data and historical real-world load data.
arXiv Detail & Related papers (2024-03-31T01:20:01Z) - Towards Long-Term Time-Series Forecasting: Feature, Pattern, and
Distribution [57.71199089609161]
Long-term time-series forecasting (LTTF) has become a pressing demand in many applications, such as wind power supply planning.
Transformer models have been adopted to deliver high prediction capacity because of the high computational self-attention mechanism.
We propose an efficient Transformerbased model, named Conformer, which differentiates itself from existing methods for LTTF in three aspects.
arXiv Detail & Related papers (2023-01-05T13:59:29Z) - Hybrid AI-based Anomaly Detection Model using Phasor Measurement Unit
Data [0.41998444721319217]
Using phasor measurement units (PMUs) to surveil the power system is one of the technologies that have a promising future.
The increased cyber-physical interaction offers both benefits and drawbacks, where one of the drawbacks comes in the form of anomalies in the measurement data.
This paper aims to develop a hybrid AI-based model that is based on various methods for anomaly detection in PMUs data.
arXiv Detail & Related papers (2022-09-21T11:22:01Z) - Ranking-Based Physics-Informed Line Failure Detection in Power Grids [66.0797334582536]
Real-time and accurate detecting of potential line failures is the first step to mitigating the extreme weather impact and activating emergency controls.
Power balance equations nonlinearity, increased uncertainty in generation during extreme events, and lack of grid observability compromise the efficiency of traditional data-driven failure detection methods.
This paper proposes a Physics-InformEd Line failure Detector (FIELD) that leverages grid topology information to reduce sample and time complexities and improve localization accuracy.
arXiv Detail & Related papers (2022-08-31T18:19:25Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z) - Robust, Deep, and Reinforcement Learning for Management of Communication
and Power Networks [6.09170287691728]
The present thesis first develops principled methods to make generic machine learning models robust against distributional uncertainties and adversarial data.
We then build on this robust framework to design robust semi-supervised learning over graph methods.
The second part of this thesis aspires to fully unleash the potential of next-generation wired and wireless networks.
arXiv Detail & Related papers (2022-02-08T05:49:06Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
We introduce a novel load forecasting method in which observed dynamics are modeled as a forced linear system.
We show that its use of intrinsic linear dynamics offers a number of desirable properties in terms of interpretability and parsimony.
Results are presented for a test case using load data from an electrical grid.
arXiv Detail & Related papers (2020-10-08T20:25:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.