Grid Monitoring and Protection with Continuous Point-on-Wave
Measurements and Generative AI
- URL: http://arxiv.org/abs/2403.06942v1
- Date: Mon, 11 Mar 2024 17:28:46 GMT
- Title: Grid Monitoring and Protection with Continuous Point-on-Wave
Measurements and Generative AI
- Authors: Lang Tong, Xinyi Wang, Qing Zhao
- Abstract summary: This article presents a case for a next-generation grid monitoring and control system, leveraging recent advances in generative artificial intelligence (AI) and machine learning.
We argue for a monitoring and control framework based on the streaming of continuous point-on-wave (CPOW) measurements with AI-powered data compression and fault detection.
- Score: 47.19756484695248
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Purpose This article presents a case for a next-generation grid monitoring
and control system, leveraging recent advances in generative artificial
intelligence (AI), machine learning, and statistical inference. Advancing
beyond earlier generations of wide-area monitoring systems built upon
supervisory control and data acquisition (SCADA) and synchrophasor
technologies, we argue for a monitoring and control framework based on the
streaming of continuous point-on-wave (CPOW) measurements with AI-powered data
compression and fault detection.
Methods and Results: The architecture of the proposed design originates from
the Wiener-Kallianpur innovation representation of a random process that
transforms causally a stationary random process into an innovation sequence
with independent and identically distributed random variables. This work
presents a generative AI approach that (i) learns an innovation autoencoder
that extracts innovation sequence from CPOW time series, (ii) compresses the
CPOW streaming data with innovation autoencoder and subband coding, and (iii)
detects unknown faults and novel trends via nonparametric sequential hypothesis
testing.
Conclusion: This work argues that conventional monitoring using SCADA and
phasor measurement unit (PMU) technologies is ill-suited for a future grid with
deep penetration of inverter-based renewable generations and distributed energy
resources. A monitoring system based on CPOW data streaming and AI data
analytics should be the basic building blocks for situational awareness of a
highly dynamic future grid.
Related papers
- An Attention-Based Deep Generative Model for Anomaly Detection in Industrial Control Systems [3.303448701376485]
Anomaly detection is critical for the secure and reliable operation of industrial control systems.
This paper presents a novel deep generative model to meet this need.
arXiv Detail & Related papers (2024-05-03T23:58:27Z) - An Unsupervised Adversarial Autoencoder for Cyber Attack Detection in Power Distribution Grids [0.0]
This paper proposes an unsupervised adversarial autoencoder (AAE) model to detect false data injection attacks (FDIAs) in unbalanced power distribution grids.
The proposed method utilizes long short-term memory (LSTM) in the structure of the autoencoder to capture the temporal dependencies in the time-series measurements.
It is tested on IEEE 13-bus and 123-bus systems with historical meteorological data and historical real-world load data.
arXiv Detail & Related papers (2024-03-31T01:20:01Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - Brain-Inspired Spiking Neural Network for Online Unsupervised Time
Series Prediction [13.521272923545409]
We present a novel Continuous Learning-based Unsupervised Recurrent Spiking Neural Network Model (CLURSNN)
CLURSNN makes online predictions by reconstructing the underlying dynamical system using Random Delay Embedding.
We show that the proposed online time series prediction methodology outperforms state-of-the-art DNN models when predicting an evolving Lorenz63 dynamical system.
arXiv Detail & Related papers (2023-04-10T16:18:37Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
Generative Adversarial Imputation Nets (GANs) and GAN-based techniques have attracted attention as unsupervised machine learning methods.
We name our proposed method as Con Conval Generative Adversarial Imputation Nets (Conv-GAIN)
arXiv Detail & Related papers (2021-11-03T03:50:48Z) - Autonomous Deep Quality Monitoring in Streaming Environments [18.354025162625557]
This paper proposes the online quality monitoring methodology developed from recently developed deep learning algorithms for data streams, namely NADINE++.
It features the integration of 1-D and 2-D convolutional layers to extract natural features of time-series and visual data streams captured from sensors and cameras of the injection molding machines from our own project.
Real-time experiments have been conducted where the online quality monitoring task is simulated on the fly under the prequential test-then-train fashion.
arXiv Detail & Related papers (2021-06-26T06:47:41Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
We introduce a novel load forecasting method in which observed dynamics are modeled as a forced linear system.
We show that its use of intrinsic linear dynamics offers a number of desirable properties in terms of interpretability and parsimony.
Results are presented for a test case using load data from an electrical grid.
arXiv Detail & Related papers (2020-10-08T20:25:52Z) - Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for
Online Collision Avoidance [95.86944752753564]
We propose an online path planning architecture that extends the model predictive control (MPC) formulation to consider future location uncertainties.
Our algorithm combines an object detection pipeline with a recurrent neural network (RNN) which infers the covariance of state estimates.
The robustness of our methods is validated on complex quadruped robot dynamics and can be generally applied to most robotic platforms.
arXiv Detail & Related papers (2020-07-28T07:34:30Z) - Online Reinforcement Learning Control by Direct Heuristic Dynamic
Programming: from Time-Driven to Event-Driven [80.94390916562179]
Time-driven learning refers to the machine learning method that updates parameters in a prediction model continuously as new data arrives.
It is desirable to prevent the time-driven dHDP from updating due to insignificant system event such as noise.
We show how the event-driven dHDP algorithm works in comparison to the original time-driven dHDP.
arXiv Detail & Related papers (2020-06-16T05:51:25Z) - Controlled time series generation for automotive software-in-the-loop
testing using GANs [0.5352699766206808]
Testing automotive mechatronic systems partly uses the software-in-the-loop approach, where systematically covering inputs of the system-under-test remains a major challenge.
One approach is to craft input sequences which eases control and feedback of the test process but falls short of exposing the system to realistic scenarios.
The other is to replay sequences recorded from field operations which accounts for reality but requires collecting a well-labeled dataset of sufficient capacity for widespread use, which is expensive.
This work applies the well-known unsupervised learning framework of Generative Adrial Networks (GAN) to learn an unlabeled dataset of recorded in-vehicle
arXiv Detail & Related papers (2020-02-16T16:19:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.