論文の概要: Ant Colony Sampling with GFlowNets for Combinatorial Optimization
- arxiv url: http://arxiv.org/abs/2403.07041v1
- Date: Mon, 11 Mar 2024 16:26:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-14 00:02:32.447279
- Title: Ant Colony Sampling with GFlowNets for Combinatorial Optimization
- Title(参考訳): 組合せ最適化のためのGFlowNetsによるAnt Colonyサンプリング
- Authors: Minsu Kim, Sanghyeok Choi, Jiwoo Son, Hyeonah Kim, Jinkyoo Park,
Yoshua Bengio
- Abstract要約: Generative Flow Ant Colony Sampler (GFACS) はニューラル誘導型メタヒューリスティックアルゴリズムである。
GFACSは生成フローネットワーク(GFlowNets)とアリコロニー最適化(ACO)手法を統合している。
- 参考スコア(独自算出の注目度): 72.95439522658647
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces the Generative Flow Ant Colony Sampler (GFACS), a novel
neural-guided meta-heuristic algorithm for combinatorial optimization. GFACS
integrates generative flow networks (GFlowNets) with the ant colony
optimization (ACO) methodology. GFlowNets, a generative model that learns a
constructive policy in combinatorial spaces, enhance ACO by providing an
informed prior distribution of decision variables conditioned on input graph
instances. Furthermore, we introduce a novel combination of training tricks,
including search-guided local exploration, energy normalization, and energy
shaping to improve GFACS. Our experimental results demonstrate that GFACS
outperforms baseline ACO algorithms in seven CO tasks and is competitive with
problem-specific heuristics for vehicle routing problems. The source code is
available at \url{https://github.com/ai4co/gfacs}.
- Abstract(参考訳): 本稿では,組合せ最適化のためのニューラルガイド型メタヒューリスティックアルゴリズムであるジェネレイティブフロー ant colony sampler (gfacs)について述べる。
GFACSは生成フローネットワーク(GFlowNets)とアリコロニー最適化(ACO)手法を統合している。
GFlowNetsは、組合せ空間で構築ポリシーを学ぶ生成モデルであり、入力グラフインスタンスに条件付き決定変数のインフォームド事前分布を提供することでACOを強化する。
さらに, GFACSを改善するために, 探索誘導局所探査, エネルギー正規化, エネルギー整形など, 新たな訓練手法の組み合わせを導入する。
実験の結果、GFACSは7つのCOタスクにおいてベースラインACOアルゴリズムよりも優れており、車両ルーティング問題に対する問題固有ヒューリスティックと競合することが示された。
ソースコードは \url{https://github.com/ai4co/gfacs} で入手できる。
関連論文リスト
- Training Greedy Policy for Proposal Batch Selection in Expensive Multi-Objective Combinatorial Optimization [52.80408805368928]
本稿では,バッチ取得のための新しいグリーディ型サブセット選択アルゴリズムを提案する。
赤蛍光タンパク質に関する実験により,提案手法は1.69倍少ないクエリでベースライン性能を達成できることが判明した。
論文 参考訳(メタデータ) (2024-06-21T05:57:08Z) - Diffusion Stochastic Optimization for Min-Max Problems [33.73046548872663]
楽観的勾配法はミニマックス最適化問題に対処するのに有用である。
従来のバージョンでは大きなバッチサイズが必要であり,Samevareps-generativeOGOGと呼ばれる新しい定式化を導入,解析する。
論文 参考訳(メタデータ) (2024-01-26T01:16:59Z) - ALEXR: An Optimal Single-Loop Algorithm for Convex Finite-Sum Coupled Compositional Stochastic Optimization [53.14532968909759]
ALEXRと呼ばれる,効率的な単ループプリマルデュアルブロックコーディネートアルゴリズムを提案する。
本研究では, ALEXR の凸面および強凸面の収束速度を滑らか性および非滑らか性条件下で確立する。
本稿では,ALEXRの収束速度が,検討されたcFCCO問題に対する1次ブロック座標アルゴリズムの中で最適であることを示すために,より低い複雑性境界を示す。
論文 参考訳(メタデータ) (2023-12-04T19:00:07Z) - Combining Kernelized Autoencoding and Centroid Prediction for Dynamic
Multi-objective Optimization [3.431120541553662]
本稿では,カーネル化された自己コード進化探索と遠近法に基づく予測を組み合わせた統一パラダイムを提案する。
提案手法は,多くの複雑なベンチマーク問題に対して,最先端の5つのアルゴリズムと比較する。
論文 参考訳(メタデータ) (2023-12-02T00:24:22Z) - Thompson sampling for improved exploration in GFlowNets [75.89693358516944]
生成フローネットワーク(Generative Flow Networks, GFlowNets)は、合成対象物上の分布からのサンプリングを、学習可能なアクションポリシーを用いたシーケンシャルな意思決定問題として扱う、アモータイズされた変分推論アルゴリズムである。
2つの領域において、TS-GFNは、過去の研究で使われたオフ・ポリティクス・サーベイ・ストラテジーよりも、探索を改善し、目標分布への収束を早くすることを示す。
論文 参考訳(メタデータ) (2023-06-30T14:19:44Z) - Let the Flows Tell: Solving Graph Combinatorial Optimization Problems
with GFlowNets [86.43523688236077]
組合せ最適化(CO)問題はしばしばNPハードであり、正確なアルゴリズムには及ばない。
GFlowNetsは、複合非正規化密度を逐次サンプリングする強力な機械として登場した。
本稿では,異なる問題に対してマルコフ決定プロセス(MDP)を設計し,条件付きGFlowNetを学習して解空間からサンプルを作成することを提案する。
論文 参考訳(メタデータ) (2023-05-26T15:13:09Z) - Cooperative coevolutionary hybrid NSGA-II with Linkage Measurement
Minimization for Large-scale Multi-objective optimization [3.274290296343038]
大規模多目的問題(LSMOP)に対する協調的共進化に基づく可変グルーピング法を提案する。
サブプロブレム最適化段階では,推定収束点に基づくガウスサンプリング演算子を用いたハイブリッドNSGA-IIを提案する。
論文 参考訳(メタデータ) (2022-08-29T08:18:15Z) - Large Scale Many-Objective Optimization Driven by Distributional
Adversarial Networks [1.2461503242570644]
本稿では, RVEA フレームワークに基づく新しいアルゴリズムを提案し, 分散適応ネットワーク (DAN) を用いて新たな子孫を生成する。
大規模多目的問題(LSMOP)における9つのベンチマーク問題に対して,新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-03-16T04:14:15Z) - Clustering Binary Data by Application of Combinatorial Optimization
Heuristics [52.77024349608834]
本稿では,2値データのクラスタリング手法について検討し,まず,クラスタのコンパクトさを計測するアグリゲーション基準を定義した。
近隣地域と人口動態最適化メタヒューリスティックスを用いた5つの新しいオリジナル手法が導入された。
準モンテカルロ実験によって生成された16のデータテーブルから、L1の相似性と階層的クラスタリング、k-means(メドイドやPAM)の1つのアグリゲーションの比較を行う。
論文 参考訳(メタデータ) (2020-01-06T23:33:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。