論文の概要: Scalable Spatiotemporal Prediction with Bayesian Neural Fields
- arxiv url: http://arxiv.org/abs/2403.07657v1
- Date: Tue, 12 Mar 2024 13:47:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-13 21:25:53.378729
- Title: Scalable Spatiotemporal Prediction with Bayesian Neural Fields
- Title(参考訳): ベイズニューラルフィールドを用いたスケーラブル時空間予測
- Authors: Feras Saad, Jacob Burnim, Colin Carroll, Brian Patton, Urs K\"oster,
Rif A. Saurous, Matthew Hoffman
- Abstract要約: BayesNFは、高容量関数推定のための新しいディープニューラルネットワークアーキテクチャである。
気候および公衆衛生データセットからの統計的機械学習予測問題に対してベイズNFを評価した。
- 参考スコア(独自算出の注目度): 3.3319596756744576
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spatiotemporal datasets, which consist of spatially-referenced time series,
are ubiquitous in many scientific and business-intelligence applications, such
as air pollution monitoring, disease tracking, and cloud-demand forecasting. As
modern datasets continue to increase in size and complexity, there is a growing
need for new statistical methods that are flexible enough to capture complex
spatiotemporal dynamics and scalable enough to handle large prediction
problems. This work presents the Bayesian Neural Field (BayesNF), a
domain-general statistical model for inferring rich probability distributions
over a spatiotemporal domain, which can be used for data-analysis tasks
including forecasting, interpolation, and variography. BayesNF integrates a
novel deep neural network architecture for high-capacity function estimation
with hierarchical Bayesian inference for robust uncertainty quantification. By
defining the prior through a sequence of smooth differentiable transforms,
posterior inference is conducted on large-scale data using variationally
learned surrogates trained via stochastic gradient descent. We evaluate BayesNF
against prominent statistical and machine-learning baselines, showing
considerable improvements on diverse prediction problems from climate and
public health datasets that contain tens to hundreds of thousands of
measurements. The paper is accompanied with an open-source software package
(https://github.com/google/bayesnf) that is easy-to-use and compatible with
modern GPU and TPU accelerators on the JAX machine learning platform.
- Abstract(参考訳): 空間的に参照された時系列からなる時空間データセットは、大気汚染モニタリング、病気の追跡、クラウド要求予測など、多くの科学的およびビジネス知性アプリケーションにおいてユビキタスである。
現代のデータセットはサイズと複雑さを増し続けており、複雑な時空間力学を捉えるのに十分なフレキシブルで、大きな予測問題を扱うのに十分なスケーラブルな新しい統計手法の必要性が高まっている。
ベイズニューラルフィールド(ベイズニューラルフィールド、BayesNF)は、時空間領域上のリッチな確率分布を推定するための一般統計モデルであり、予測、補間、およびバリアグラフィーなどのデータ解析に使用できる。
BayesNFは、高容量関数推定のための新しいディープニューラルネットワークアーキテクチャと、堅牢な不確実性定量化のための階層的ベイズ推論を統合する。
滑らかな微分可能変換の列を通じて事前を定義することにより,確率勾配降下法を用いて訓練した変動学習サロゲートを用いて,大規模データに対して後部推論を行う。
我々はBayesNFを統計的および機械学習のベースラインに対して評価し、数十から数十万の計測値を含む気候および公衆衛生データセットからの多様な予測問題に対する大幅な改善を示す。
論文にはオープンソースのソフトウェアパッケージ(https://github.com/google/bayesnf)が付属しており、jax機械学習プラットフォーム上の最新のgpuとtpuアクセラレータと互換性がある。
関連論文リスト
- Tackling Data Heterogeneity in Federated Time Series Forecasting [61.021413959988216]
時系列予測は、エネルギー消費予測、病気の伝染モニタリング、天気予報など、様々な実世界の応用において重要な役割を果たす。
既存のほとんどのメソッドは、分散デバイスから中央クラウドサーバに大量のデータを収集する、集中的なトレーニングパラダイムに依存しています。
本稿では,情報合成データを補助的知識キャリアとして生成することにより,データの均一性に対処する新しいフレームワークであるFed-TRENDを提案する。
論文 参考訳(メタデータ) (2024-11-24T04:56:45Z) - Spatiotemporal-Linear: Towards Universal Multivariate Time Series
Forecasting [10.404951989266191]
本稿ではSTL(Spatio-Temporal-Linear)フレームワークを紹介する。
STLは、Linearベースのアーキテクチャを拡張するために、時間組込みと空間インフォームドのバイパスをシームレスに統合する。
実証的な証拠は、さまざまな観測時間と予測期間とデータセットにわたって、LinearとTransformerのベンチマークを上回り、STLの成果を浮き彫りにしている。
論文 参考訳(メタデータ) (2023-12-22T17:46:34Z) - BSSAD: Towards A Novel Bayesian State-Space Approach for Anomaly
Detection in Multivariate Time Series [0.0]
ベイジアン状態空間異常検出(BSSAD)と呼ばれる新しい,革新的な異常検出手法を提案する。
提案手法の設計は,ベイズ状態空間アルゴリズムの次の状態予測における強みと,繰り返しニューラルネットワークとオートエンコーダの有効性を組み合わせたものである。
特に,粒子フィルタとアンサンブルカルマンフィルタのベイズ状態空間モデルの利用に着目する。
論文 参考訳(メタデータ) (2023-01-30T16:21:18Z) - Probabilistic AutoRegressive Neural Networks for Accurate Long-range
Forecasting [6.295157260756792]
確率的自己回帰ニューラルネットワーク(PARNN)について紹介する。
PARNNは、非定常性、非線形性、非調和性、長距離依存、カオスパターンを示す複雑な時系列データを扱うことができる。
本研究では,Transformers,NBeats,DeepARなどの標準統計モデル,機械学習モデル,ディープラーニングモデルに対して,PARNNの性能を評価する。
論文 参考訳(メタデータ) (2022-04-01T17:57:36Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
時間変化量の推定は、医療や金融などの分野における意思決定の基本的な構成要素である。
本稿では,アテンションベースデコーダを用いて関節分布を推定する多元的手法を提案する。
本研究では,本モデルが実世界の複数のデータセットに対して最先端の予測を生成することを示す。
論文 参考訳(メタデータ) (2022-02-07T21:37:29Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
GAN(Generative Adversarial Imputation Nets)とGANベースの技術は、教師なし機械学習手法として注目されている。
提案手法を Con Conval Generative Adversarial Imputation Nets (Conv-GAIN) と呼ぶ。
論文 参考訳(メタデータ) (2021-11-03T03:50:48Z) - RNN with Particle Flow for Probabilistic Spatio-temporal Forecasting [30.277213545837924]
古典的な統計モデルの多くは、時系列データに存在する複雑さと高い非線形性を扱うのに不足することが多い。
本研究では,時系列データを非線形状態空間モデルからのランダムな実現とみなす。
粒子流は, 複雑で高次元的な設定において極めて有効であることを示すため, 状態の後方分布を近似するツールとして用いられる。
論文 参考訳(メタデータ) (2021-06-10T21:49:23Z) - Quantifying Uncertainty in Deep Spatiotemporal Forecasting [67.77102283276409]
本稿では,正規格子法とグラフ法という2種類の予測問題について述べる。
我々はベイジアンおよび頻繁な視点からUQ法を解析し、統計的決定理論を通じて統一的な枠組みを提示する。
実際の道路ネットワークのトラフィック、疫病、空気質予測タスクに関する広範な実験を通じて、異なるUQ手法の統計計算トレードオフを明らかにする。
論文 参考訳(メタデータ) (2021-05-25T14:35:46Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
ニューラルネットワークは、普遍関数近似器として機能することで、複雑なデータ分布から学習することに成功した。
彼らはしばしば予測に自信過剰であり、不正確で誤った確率的予測に繋がる。
本稿では,モデルが不当に過信である特徴空間の領域を探索し,それらの予測のエントロピーをラベルの以前の分布に対して条件的に高める手法を提案する。
論文 参考訳(メタデータ) (2021-02-22T07:02:37Z) - Improved Predictive Deep Temporal Neural Networks with Trend Filtering [22.352437268596674]
本稿では,ディープニューラルネットワークとトレンドフィルタリングに基づく新しい予測フレームワークを提案する。
我々は,学習データをトレンドフィルタリングによって時間的に処理した場合,深部時相ニューラルネットワークの予測性能が向上することを明らかにする。
論文 参考訳(メタデータ) (2020-10-16T08:29:36Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
本稿では,予測の多様性を奨励することで,ニューラルネットワークの効果的なアンサンブルを生成する問題をターゲットにする。
そこで本研究では,潜伏変数の学習における逆損失の多様性を明示的に最適化し,マルチモーダルデータのモデリングに必要な出力予測の多様性を得る。
最も競争力のあるベースラインと比較して、データ分布の変化の下で、分類精度が大幅に向上した。
論文 参考訳(メタデータ) (2020-03-10T03:10:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。