論文の概要: Probabilistic Functional Neural Networks
- arxiv url: http://arxiv.org/abs/2503.21585v1
- Date: Thu, 27 Mar 2025 15:01:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-28 12:54:30.594635
- Title: Probabilistic Functional Neural Networks
- Title(参考訳): 確率論的機能ニューラルネットワーク
- Authors: Haixu Wang, Jiguo Cao,
- Abstract要約: 高次元関数時系列(HDFTS)は、しばしば非線形トレンドと高空間次元によって特徴づけられる。
本稿では,これらの課題に対処する新しい確率関数型ニューラルネットワーク(ProFnet)を提案する。
ProFnetは、フィードフォワードとディープニューラルネットワークの強みを確率的モデリングと統合する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: High-dimensional functional time series (HDFTS) are often characterized by nonlinear trends and high spatial dimensions. Such data poses unique challenges for modeling and forecasting due to the nonlinearity, nonstationarity, and high dimensionality. We propose a novel probabilistic functional neural network (ProFnet) to address these challenges. ProFnet integrates the strengths of feedforward and deep neural networks with probabilistic modeling. The model generates probabilistic forecasts using Monte Carlo sampling and also enables the quantification of uncertainty in predictions. While capturing both temporal and spatial dependencies across multiple regions, ProFnet offers a scalable and unified solution for large datasets. Applications to Japan's mortality rates demonstrate superior performance. This approach enhances predictive accuracy and provides interpretable uncertainty estimates, making it a valuable tool for forecasting complex high-dimensional functional data and HDFTS.
- Abstract(参考訳): 高次元関数時系列(HDFTS)は、しばしば非線形トレンドと高空間次元によって特徴づけられる。
このようなデータは、非線形性、非定常性、高次元性により、モデリングと予測に固有の課題を生じさせる。
本稿では,これらの課題に対処する新しい確率関数型ニューラルネットワーク(ProFnet)を提案する。
ProFnetは、フィードフォワードとディープニューラルネットワークの強みを確率的モデリングと統合する。
このモデルはモンテカルロサンプリングを用いて確率予測を生成し、予測の不確実性の定量化を可能にする。
複数のリージョンにわたる時間的および空間的依存関係をキャプチャする一方で、ProFnetは大規模データセットに対してスケーラブルで統一的なソリューションを提供する。
日本の死亡率の応用は優れた性能を示している。
このアプローチは予測精度を高め、解釈可能な不確実性推定を提供し、複雑な高次元関数データとHDFTSを予測するための貴重なツールとなる。
関連論文リスト
- ST-FiT: Inductive Spatial-Temporal Forecasting with Limited Training Data [59.78770412981611]
現実世界のアプリケーションでは、ほとんどのノードはトレーニング中に利用可能な時間データを持っていないかもしれない。
この問題に対処するために,ST-FiTというフレームワークを提案する。
論文 参考訳(メタデータ) (2024-12-14T17:51:29Z) - SFANet: Spatial-Frequency Attention Network for Weather Forecasting [54.470205739015434]
天気予報は様々な分野において重要な役割を担い、意思決定とリスク管理を推進している。
伝統的な手法は、しばしば気象系の複雑な力学を捉えるのに苦労する。
本稿では,これらの課題に対処し,天気予報の精度を高めるための新しい枠組みを提案する。
論文 参考訳(メタデータ) (2024-05-29T08:00:15Z) - Tractable Function-Space Variational Inference in Bayesian Neural
Networks [72.97620734290139]
ニューラルネットワークの予測不確かさを推定するための一般的なアプローチは、ネットワークパラメータに対する事前分布を定義することである。
本稿では,事前情報を組み込むスケーラブルな関数空間変動推論手法を提案する。
提案手法は,様々な予測タスクにおいて,最先端の不確実性評価と予測性能をもたらすことを示す。
論文 参考訳(メタデータ) (2023-12-28T18:33:26Z) - Uncertainty Quantification of Sparse Travel Demand Prediction with
Spatial-Temporal Graph Neural Networks [4.488583779590991]
本研究では,空間的ゼロインフレーション型負二項グラフニューラルネットワーク(STZINB-GNN)を開発し,スパース走行需要の不確かさを定量化する。
拡散と時間的畳み込みネットワークを用いて空間的および時間的相関を解析し、それから融合して旅行需要の確率分布をパラメータ化する。
その結果,特に時空間分解能が高い場合,ベンチマークモデルよりもSTZINB-GNNの方が優れていることが示された。
論文 参考訳(メタデータ) (2022-08-11T16:21:10Z) - Probabilistic AutoRegressive Neural Networks for Accurate Long-range
Forecasting [6.295157260756792]
確率的自己回帰ニューラルネットワーク(PARNN)について紹介する。
PARNNは、非定常性、非線形性、非調和性、長距離依存、カオスパターンを示す複雑な時系列データを扱うことができる。
本研究では,Transformers,NBeats,DeepARなどの標準統計モデル,機械学習モデル,ディープラーニングモデルに対して,PARNNの性能を評価する。
論文 参考訳(メタデータ) (2022-04-01T17:57:36Z) - Bilinear Input Normalization for Neural Networks in Financial
Forecasting [101.89872650510074]
本稿では,高頻度金融時系列を扱うディープニューラルネットワークのための新しいデータ駆動正規化手法を提案する。
提案手法は,財務時系列のバイモーダル特性を考慮したものである。
我々の実験は最先端のニューラルネットワークと高周波データを用いて行われ、他の正規化技術よりも大幅に改善された。
論文 参考訳(メタデータ) (2021-09-01T07:52:03Z) - Spatiotemporal convolutional network for time-series prediction and
causal inference [21.895413699349966]
時系列のマルチステップ予測を効率的に正確にレンダリングするために、ニューラルネットワークコンピューティングフレームワークi.N.N.を開発した。
このフレームワークは、人工知能(AI)や機械学習分野の実践的応用において大きな可能性を秘めている。
論文 参考訳(メタデータ) (2021-07-03T06:20:43Z) - RNN with Particle Flow for Probabilistic Spatio-temporal Forecasting [30.277213545837924]
古典的な統計モデルの多くは、時系列データに存在する複雑さと高い非線形性を扱うのに不足することが多い。
本研究では,時系列データを非線形状態空間モデルからのランダムな実現とみなす。
粒子流は, 複雑で高次元的な設定において極めて有効であることを示すため, 状態の後方分布を近似するツールとして用いられる。
論文 参考訳(メタデータ) (2021-06-10T21:49:23Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
ニューラルネットワークは、普遍関数近似器として機能することで、複雑なデータ分布から学習することに成功した。
彼らはしばしば予測に自信過剰であり、不正確で誤った確率的予測に繋がる。
本稿では,モデルが不当に過信である特徴空間の領域を探索し,それらの予測のエントロピーをラベルの以前の分布に対して条件的に高める手法を提案する。
論文 参考訳(メタデータ) (2021-02-22T07:02:37Z) - Physics-aware, deep probabilistic modeling of multiscale dynamics in the
Small Data regime [0.0]
本稿では,予測的,低次元粗粒度(CG)変数を同時に同定する確率論的視点を提供する。
我々は、CG進化法則の右辺を表すために、ディープニューラルネットワークの表現能力を活用している。
移動粒子の高次元システムにおいて,提案手法の有効性を実証する。
論文 参考訳(メタデータ) (2021-02-08T15:04:05Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
確率的時系列予測は、その歴史に基づいて将来の分布を推定する。
本稿では,非線形エミッションモデルと遷移モデルとをネットワークによってパラメータ化した,確率的時系列予測のための深部状態空間モデルを提案する。
実験では,我々のモデルが正確かつ鋭い確率予測を生成することを示す。
論文 参考訳(メタデータ) (2021-01-31T06:49:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。