Temporal Decisions: Leveraging Temporal Correlation for Efficient
Decisions in Early Exit Neural Networks
- URL: http://arxiv.org/abs/2403.07958v1
- Date: Tue, 12 Mar 2024 08:28:27 GMT
- Title: Temporal Decisions: Leveraging Temporal Correlation for Efficient
Decisions in Early Exit Neural Networks
- Authors: Max Sponner and Lorenzo Servadei and Bernd Waschneck and Robert Wille
and Akash Kumar
- Abstract summary: This paper introduces Difference Detection and Temporal Patience as decision mechanisms for Early Exit Neural Networks.
We evaluate their effectiveness in health monitoring, image classification, and wake-word detection tasks.
We achieved a reduction of mean operations per inference by up to 80% while maintaining accuracy levels within 5% of the original model.
- Score: 4.343246899774834
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Deep Learning is becoming increasingly relevant in Embedded and
Internet-of-things applications. However, deploying models on embedded devices
poses a challenge due to their resource limitations. This can impact the
model's inference accuracy and latency. One potential solution are Early Exit
Neural Networks, which adjust model depth dynamically through additional
classifiers attached between their hidden layers. However, the real-time
termination decision mechanism is critical for the system's efficiency,
latency, and sustained accuracy.
This paper introduces Difference Detection and Temporal Patience as decision
mechanisms for Early Exit Neural Networks. They leverage the temporal
correlation present in sensor data streams to efficiently terminate the
inference. We evaluate their effectiveness in health monitoring, image
classification, and wake-word detection tasks. Our novel contributions were
able to reduce the computational footprint compared to established decision
mechanisms significantly while maintaining higher accuracy scores. We achieved
a reduction of mean operations per inference by up to 80% while maintaining
accuracy levels within 5% of the original model.
These findings highlight the importance of considering temporal correlation
in sensor data to improve the termination decision.
Related papers
- Zero-Shot Temporal Resolution Domain Adaptation for Spiking Neural Networks [3.2366933261812076]
Spiking Neural Networks (SNNs) are biologically-inspired deep neural networks that efficiently extract temporal information.
SNN model parameters are sensitive to temporal resolution, leading to significant performance drops when the temporal resolution of target data at the edge is not the same.
We propose three novel domain adaptation methods for adapting neuron parameters to account for the change in time resolution without re-training on target time-resolution.
arXiv Detail & Related papers (2024-11-07T14:58:51Z) - DelGrad: Exact gradients in spiking networks for learning transmission delays and weights [0.9411751957919126]
Spiking neural networks (SNNs) inherently rely on the timing of signals for representing and processing information.
Recent work has demonstrated the substantial advantages of learning these delays along with synaptic weights.
We propose an analytical approach for calculating exact loss gradients with respect to both synaptic weights and delays in an event-based fashion.
arXiv Detail & Related papers (2024-04-30T00:02:34Z) - Uncertainty-Aware Deep Attention Recurrent Neural Network for
Heterogeneous Time Series Imputation [0.25112747242081457]
Missingness is ubiquitous in multivariate time series and poses an obstacle to reliable downstream analysis.
We propose DEep Attention Recurrent Imputation (Imputation), which jointly estimates missing values and their associated uncertainty.
Experiments show that I surpasses the SOTA in diverse imputation tasks using real-world datasets.
arXiv Detail & Related papers (2024-01-04T13:21:11Z) - Accelerating Scalable Graph Neural Network Inference with Node-Adaptive
Propagation [80.227864832092]
Graph neural networks (GNNs) have exhibited exceptional efficacy in a diverse array of applications.
The sheer size of large-scale graphs presents a significant challenge to real-time inference with GNNs.
We propose an online propagation framework and two novel node-adaptive propagation methods.
arXiv Detail & Related papers (2023-10-17T05:03:00Z) - Fast Exploration of the Impact of Precision Reduction on Spiking Neural
Networks [63.614519238823206]
Spiking Neural Networks (SNNs) are a practical choice when the target hardware reaches the edge of computing.
We employ an Interval Arithmetic (IA) model to develop an exploration methodology that takes advantage of the capability of such a model to propagate the approximation error.
arXiv Detail & Related papers (2022-11-22T15:08:05Z) - Impact of spiking neurons leakages and network recurrences on
event-based spatio-temporal pattern recognition [0.0]
Spiking neural networks coupled with neuromorphic hardware and event-based sensors are getting increased interest for low-latency and low-power inference at the edge.
We explore the impact of synaptic and membrane leakages in spiking neurons.
arXiv Detail & Related papers (2022-11-14T21:34:02Z) - Graph Neural Networks with Trainable Adjacency Matrices for Fault
Diagnosis on Multivariate Sensor Data [69.25738064847175]
It is necessary to consider the behavior of the signals in each sensor separately, to take into account their correlation and hidden relationships with each other.
The graph nodes can be represented as data from the different sensors, and the edges can display the influence of these data on each other.
It was proposed to construct a graph during the training of graph neural network. This allows to train models on data where the dependencies between the sensors are not known in advance.
arXiv Detail & Related papers (2022-10-20T11:03:21Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
Generative Adversarial Imputation Nets (GANs) and GAN-based techniques have attracted attention as unsupervised machine learning methods.
We name our proposed method as Con Conval Generative Adversarial Imputation Nets (Conv-GAIN)
arXiv Detail & Related papers (2021-11-03T03:50:48Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
Neural networks have proven successful at learning from complex data distributions by acting as universal function approximators.
They are often overconfident in their predictions, which leads to inaccurate and miscalibrated probabilistic predictions.
We propose a solution by seeking out regions of feature space where the model is unjustifiably overconfident, and conditionally raising the entropy of those predictions towards that of the prior distribution of the labels.
arXiv Detail & Related papers (2021-02-22T07:02:37Z) - Accelerating Deep Learning Inference via Learned Caches [11.617579969991294]
Deep Neural Networks (DNNs) are witnessing increased adoption in multiple domains owing to their high accuracy in solving real-world problems.
Current low latency solutions trade-off on accuracy or fail to exploit the inherent temporal locality in prediction serving workloads.
We present the design of GATI, an end-to-end prediction serving system that incorporates learned caches for low-latency inference.
arXiv Detail & Related papers (2021-01-18T22:13:08Z) - Network Diffusions via Neural Mean-Field Dynamics [52.091487866968286]
We propose a novel learning framework for inference and estimation problems of diffusion on networks.
Our framework is derived from the Mori-Zwanzig formalism to obtain an exact evolution of the node infection probabilities.
Our approach is versatile and robust to variations of the underlying diffusion network models.
arXiv Detail & Related papers (2020-06-16T18:45:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.