論文の概要: Rich Semantic Knowledge Enhanced Large Language Models for Few-shot Chinese Spell Checking
- arxiv url: http://arxiv.org/abs/2403.08492v3
- Date: Wed, 20 Nov 2024 04:00:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-21 16:10:49.829620
- Title: Rich Semantic Knowledge Enhanced Large Language Models for Few-shot Chinese Spell Checking
- Title(参考訳): 中国語スペルチェックのためのリッチセマンティック知識による大規模言語モデルの構築
- Authors: Ming Dong, Yujing Chen, Miao Zhang, Hao Sun, Tingting He,
- Abstract要約: 本稿では,RS-LLM (Rich Semantic based LLMs) というコンテキスト内学習手法を用いて,大規模言語モデル (LLM) を基礎モデルとして導入する。
少数の中国固有のリッチなセマンティック構造を導入することで、LCMは、数ショットのCSCタスクにおいてBERTベースのモデルよりも優れた性能が得られることがわかった。
- 参考スコア(独自算出の注目度): 21.799697177859898
- License:
- Abstract: Chinese Spell Checking (CSC) is a widely used technology, which plays a vital role in speech to text (STT) and optical character recognition (OCR). Most of the existing CSC approaches relying on BERT architecture achieve excellent performance. However, limited by the scale of the foundation model, BERT-based method does not work well in few-shot scenarios, showing certain limitations in practical applications. In this paper, we explore using an in-context learning method named RS-LLM (Rich Semantic based LLMs) to introduce large language models (LLMs) as the foundation model. Besides, we study the impact of introducing various Chinese rich semantic information in our framework. We found that by introducing a small number of specific Chinese rich semantic structures, LLMs achieve better performance than the BERT-based model on few-shot CSC task. Furthermore, we conduct experiments on multiple datasets, and the experimental results verified the superiority of our proposed framework.
- Abstract(参考訳): Chinese Spell Checking (CSC) は、音声テキスト(STT)と光学文字認識(OCR)において重要な役割を果たす、広く使われている技術である。
既存のCSCアプローチの多くはBERTアーキテクチャに依存しており、優れたパフォーマンスを実現している。
しかし、基盤モデルの規模によって制限されているため、BERTベースの手法は数ショットのシナリオではうまく動作せず、実用的なアプリケーションでは一定の制限が示される。
本稿では,RS-LLM (Rich Semantic based LLMs) というコンテキスト内学習手法を用いて,大規模言語モデル (LLM) を基礎モデルとして導入する。
さらに,我々のフレームワークに中国語のリッチな意味情報を導入することの影響について検討した。
少数の中国固有のリッチなセマンティック構造を導入することで、LCMは、数ショットのCSCタスクにおいてBERTベースのモデルよりも優れた性能が得られることがわかった。
さらに,複数のデータセットに対して実験を行い,実験結果から提案フレームワークの優位性を検証した。
関連論文リスト
- Improving In-Context Learning with Small Language Model Ensembles [2.3499129784547654]
In-context Learning (ICL) は安価で効率的な代替手段であるが、高度な手法の精度と一致しない。
本稿では,複数の微調整小言語モデル(SLM)の専門知識を活用することでICLを強化する新しいアプローチであるEnsemble SuperICLを提案する。
論文 参考訳(メタデータ) (2024-10-29T09:02:37Z) - A Survey of Small Language Models [104.80308007044634]
小言語モデル (SLM) は, 計算資源の最小化による言語タスクの効率化と性能の向上により, ますます重要になってきている。
本稿では,SLMのアーキテクチャ,トレーニング技術,モデル圧縮技術に着目した総合的な調査を行う。
論文 参考訳(メタデータ) (2024-10-25T23:52:28Z) - Making Text Embedders Few-Shot Learners [33.50993377494602]
本稿では,高品質なテキスト埋め込みを実現するために,少数の例を用いた新しいモデルbge-en-iclを提案する。
提案手法では,タスク関連例をクエリ側に直接統合することで,タスク間の大幅な改善を実現している。
MTEBおよびAIR-Benchベンチマークによる実験結果から,本手法がSOTA(State-of-the-art)性能を新たに設定することを示す。
論文 参考訳(メタデータ) (2024-09-24T03:30:19Z) - Evaluating Linguistic Capabilities of Multimodal LLMs in the Lens of Few-Shot Learning [15.919493497867567]
本研究では,VALSEベンチマークを用いたマルチモーダル大規模言語モデル(MLLM)の性能評価を目的とした。
我々は,モデルサイズや事前学習データセットの異なる最先端MLLMの包括的評価を行った。
論文 参考訳(メタデータ) (2024-07-17T11:26:47Z) - MoE-CT: A Novel Approach For Large Language Models Training With Resistance To Catastrophic Forgetting [53.77590764277568]
ベースモデルの学習を多言語拡張プロセスから分離する新しいMoE-CTアーキテクチャを提案する。
我々の設計では、元のLLMパラメータを凍結し、高リソース言語のパフォーマンスを保護しますが、様々な言語データセットに基づいてトレーニングされたMoEモジュールは、低リソース言語の習熟度を向上します。
論文 参考訳(メタデータ) (2024-06-25T11:03:45Z) - Language Model Can Do Knowledge Tracing: Simple but Effective Method to Integrate Language Model and Knowledge Tracing Task [3.1459398432526267]
本稿では,LKT(Language Model-based Knowledge Tracing)を提案する。
LKTはテキスト情報を効果的に組み込んでおり、大規模なベンチマークデータセットで以前のKTモデルよりも大幅に優れている。
論文 参考訳(メタデータ) (2024-06-05T03:26:59Z) - Scalable Language Model with Generalized Continual Learning [58.700439919096155]
The Joint Adaptive Re-ization (JARe) is integrated with Dynamic Task-related Knowledge Retrieval (DTKR) to enable adapt adjust of language model based on specific downstream task。
提案手法は,様々なバックボーンやベンチマーク上での最先端性能を実証し,最小限の忘れを伴い,フルセットおよび少数ショットのシナリオにおいて効果的な連続学習を実現する。
論文 参考訳(メタデータ) (2024-04-11T04:22:15Z) - Analyzing and Adapting Large Language Models for Few-Shot Multilingual
NLU: Are We There Yet? [82.02076369811402]
教師付きファインチューニング(SFT)、教師付きインストラクションチューニング(SIT)、インコンテキストラーニング(ICL)は、3つの代替であり、事実上の標準的アプローチである。
提案手法は,6つの高・低リソース言語,3つの異なるNLUタスク,多種多様な言語とドメインのセットアップを用いて,3つのアプローチを網羅的かつ体系的に比較する。
そこで本研究では,教師あり指導のチューニングが,性能とリソース要件の最良のトレードオフであることを示す。
論文 参考訳(メタデータ) (2024-03-04T10:48:13Z) - Large Language Models can Contrastively Refine their Generation for Better Sentence Representation Learning [57.74233319453229]
大規模言語モデル(LLM)は画期的な技術として登場し、それらの非並列テキスト生成能力は、基本的な文表現学習タスクへの関心を喚起している。
コーパスを生成するためにLLMの処理を分解するマルチレベルコントラスト文表現学習フレームワークであるMultiCSRを提案する。
実験の結果,MultiCSRはより高度なLCMをChatGPTの性能を超えつつ,ChatGPTに適用することで最先端の成果を得られることがわかった。
論文 参考訳(メタデータ) (2023-10-17T03:21:43Z) - OCRBench: On the Hidden Mystery of OCR in Large Multimodal Models [122.27878464009181]
テキスト関連視覚タスクにおいて, GPT4V や Gemini などの大規模マルチモーダルモデルの包括的評価を行った。
OCRBenchには29のデータセットがあり、最も包括的なOCR評価ベンチマークが利用できる。
論文 参考訳(メタデータ) (2023-05-13T11:28:37Z) - LICHEE: Improving Language Model Pre-training with Multi-grained
Tokenization [19.89228774074371]
本稿では,入力テキストの多粒度情報を効率的に組み込むための,シンプルで効果的な事前学習手法であるlicHEEを提案する。
本手法は,様々な事前学習言語モデルに適用でき,その表現能力を向上させることができる。
論文 参考訳(メタデータ) (2021-08-02T12:08:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。