論文の概要: Predictive Analysis of Tuberculosis Treatment Outcomes Using Machine Learning: A Karnataka TB Data Study at a Scale
- arxiv url: http://arxiv.org/abs/2403.08834v1
- Date: Wed, 13 Mar 2024 08:04:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-16 00:41:28.814478
- Title: Predictive Analysis of Tuberculosis Treatment Outcomes Using Machine Learning: A Karnataka TB Data Study at a Scale
- Title(参考訳): 機械学習を用いた結核治療成績の予測分析--大規模カルナタカTBデータスタディ
- Authors: SeshaSai Nath Chinagudaba, Darshan Gera, Krishna Kiran Vamsi Dasu, Uma Shankar S, Kiran K, Anil Singarajpure, Shivayogappa. U, Somashekar N, Vineet Kumar Chadda, Sharath B N,
- Abstract要約: 本研究では,結核治療の結果をより正確に予測するために,機械学習をどのように利用できるかを検討する。
データ前処理は研究の重要な要素であり、検証セットでは98%のリコールとAUC-ROCスコア0.95のリコールを達成した。
この研究は、医療における機械学習の可能性を示すため、TBとの戦いにおいて重要な一歩を踏み出した。
- 参考スコア(独自算出の注目度): 1.5261072024054256
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Tuberculosis (TB) remains a global health threat, ranking among the leading causes of mortality worldwide. In this context, machine learning (ML) has emerged as a transformative force, providing innovative solutions to the complexities associated with TB treatment.This study explores how machine learning, especially with tabular data, can be used to predict Tuberculosis (TB) treatment outcomes more accurately. It transforms this prediction task into a binary classification problem, generating risk scores from patient data sourced from NIKSHAY, India's national TB control program, which includes over 500,000 patient records. Data preprocessing is a critical component of the study, and the model achieved an recall of 98% and an AUC-ROC score of 0.95 on the validation set, which includes 20,000 patient records.We also explore the use of Natural Language Processing (NLP) for improved model learning. Our results, corroborated by various metrics and ablation studies, validate the effectiveness of our approach. The study concludes by discussing the potential ramifications of our research on TB eradication efforts and proposing potential avenues for future work. This study marks a significant stride in the battle against TB, showcasing the potential of machine learning in healthcare.
- Abstract(参考訳): 結核 (TB) は世界的な健康上の脅威であり、世界的死亡率の主要な原因の一つである。
この文脈において、機械学習(ML)は変換力として現れ、TB治療に関連する複雑さに対する革新的な解決策を提供する。この研究では、特に表計算データを用いて、どのように機械学習を用いて結核(TB)治療結果をより正確に予測できるかを探求する。
この予測タスクをバイナリ分類問題に変換し、50万人以上の患者記録を含むインドの全国TBコントロールプログラムであるNIKSHAYから得られた患者データからリスクスコアを生成する。
データ前処理は研究の重要な要素であり、モデル学習の改善には自然言語処理(NLP)の利用も検討し、検証セットでは98%、AUC-ROCスコアは0.95となった。
その結果, 様々な測定値とアブレーション研究によって裏付けられ, 提案手法の有効性が検証された。
本研究は, TB根絶への取り組みの潜在的影響と今後の研究への潜在的道筋について論じることによって, 結論を導いた。
この研究は、医療における機械学習の可能性を示すため、TBとの戦いにおいて重要な一歩を踏み出した。
関連論文リスト
- COVID-19 Probability Prediction Using Machine Learning: An Infectious Approach [0.0]
本研究は、新型コロナウイルス感染確率を予測するための高度な機械学習(ML)技術の適用について検討する。
我々はXGBoost, LGBM, AdaBoost, Logistic Regression, Decision Tree, RandomForest, CatBoost, KNN, Deep Neural Networks (DNN) などのMLモデルの有効性について厳密な調査を行った。
以上の結果から,Deep Neural Networks (DNN) が最高性能モデルとして登場し,精度が向上し,リコール指標が得られた。
論文 参考訳(メタデータ) (2024-08-23T05:15:24Z) - Using Pre-training and Interaction Modeling for ancestry-specific disease prediction in UK Biobank [69.90493129893112]
近年のゲノムワイド・アソシエーション(GWAS)研究は、複雑な形質の遺伝的基盤を明らかにしているが、非ヨーロッパ系個体の低発現を示している。
そこで本研究では,マルチオミクスデータを用いて,多様な祖先間での疾患予測を改善することができるかを評価する。
論文 参考訳(メタデータ) (2024-04-26T16:39:50Z) - Enhancing Readmission Prediction with Deep Learning: Extracting Biomedical Concepts from Clinical Texts [0.26813152817733554]
本研究は,30日以内の患者の寛解をテキストマイニング技術を用いて予測することに焦点を当てた。
この目的のために分類モデルを開発するために,様々な機械学習および深層学習手法が用いられた。
論文 参考訳(メタデータ) (2024-03-12T09:03:44Z) - Leveraging Federated Learning for Automatic Detection of Clopidogrel
Treatment Failures [0.8132630541462695]
本研究では,クロピドッグレル処理障害検出のためのフェデレーション学習戦略を活用する。
地理的中心に基づいてデータを分割し,フェデレート学習の性能を評価した。
クロピドッグレル治療障害検出におけるフェデレート学習の可能性について検討した。
論文 参考訳(メタデータ) (2024-03-05T23:31:07Z) - Incomplete Multimodal Learning for Complex Brain Disorders Prediction [65.95783479249745]
本稿では,変換器と生成対向ネットワークを用いた不完全なマルチモーダルデータ統合手法を提案する。
アルツハイマー病神経画像イニシアチブコホートを用いたマルチモーダルイメージングによる認知変性と疾患予後の予測に本手法を適用した。
論文 参考訳(メタデータ) (2023-05-25T16:29:16Z) - Using Deep Learning-based Features Extracted from CT scans to Predict
Outcomes in COVID-19 Patients [0.4841303207359715]
Computed Tomography(CT)スキャンとElectronic Health Record(EHR)データから抽出したマルチモーダル特徴を組み合わせた新しい手法を提案する。
深層学習モデルを用いてCTスキャンから定量的特徴を抽出する。
これらの特徴と、EHRデータベースから直接読み込まれるものを組み合わせることで、マシンラーニングモデルに入力され、最終的には患者の結果の確率が出力される。
論文 参考訳(メタデータ) (2022-05-10T16:22:16Z) - COVID-Net Biochem: An Explainability-driven Framework to Building
Machine Learning Models for Predicting Survival and Kidney Injury of COVID-19
Patients from Clinical and Biochemistry Data [66.43957431843324]
我々は、機械学習モデルを構築するための汎用的で説明可能なフレームワークであるCOVID-Net Biochemを紹介する。
この枠組みを用いて、新型コロナウイルス患者の生存率と、入院中に急性腎不全を発症する可能性を予測する。
論文 参考訳(メタデータ) (2022-04-24T07:38:37Z) - Survival Prediction of Heart Failure Patients using Stacked Ensemble
Machine Learning Algorithm [0.0]
心不全は、我々の時代における主要な健康上の危険問題の1つであり、世界中の死因の1つです。
データマイニングは、医療機関が生成した大量の生データを意味のある情報に変換するプロセスである。
本研究は, 心不全後の生存可能性を予測するためには, 患者から採取した特定の属性のみが必須であることが示唆された。
論文 参考訳(メタデータ) (2021-08-30T16:42:27Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
本稿では,新しいコントラスト型正規化臨床分類モデルを提案する。
EHRデータに特化した2つのユニークなポジティブサンプリング戦略を紹介します。
私たちのフレームワークは、現実世界のCOVID-19 EHRデータの死亡リスクを予測するために、競争の激しい実験結果をもたらします。
論文 参考訳(メタデータ) (2021-04-07T06:02:04Z) - TB-Net: A Tailored, Self-Attention Deep Convolutional Neural Network
Design for Detection of Tuberculosis Cases from Chest X-ray Images [66.93350009086132]
結核は世界的な健康問題であり、感染症による死亡の主な原因です。
リソース制限シナリオで使用する人工知能ベースのTBスクリーニングソリューションに大きな関心が寄せられています。
TBケーススクリーニングに適した自己意識型ディープ畳み込みニューラルネットワークTB-Netについて紹介します。
論文 参考訳(メタデータ) (2021-04-06T14:09:05Z) - Predictive Modeling of ICU Healthcare-Associated Infections from
Imbalanced Data. Using Ensembles and a Clustering-Based Undersampling
Approach [55.41644538483948]
本研究は,集中治療室における危険因子の同定と医療関連感染症の予測に焦点をあてる。
感染発生率の低減に向けた意思決定を支援することを目的とする。
論文 参考訳(メタデータ) (2020-05-07T16:13:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。