Towards Efficient Risk-Sensitive Policy Gradient: An Iteration Complexity Analysis
- URL: http://arxiv.org/abs/2403.08955v1
- Date: Wed, 13 Mar 2024 20:50:49 GMT
- Title: Towards Efficient Risk-Sensitive Policy Gradient: An Iteration Complexity Analysis
- Authors: Rui Liu, Erfaun Noorani, Pratap Tokekar, John S. Baras,
- Abstract summary: We investigate whether risk-sensitive algorithms can achieve better iteration complexity compared to their risk-neutral counterparts.
Our theoretical analysis demonstrates that risk-sensitive REINFORCE can have a reduced number of iterations required for convergence.
Our simulation results validate that risk-averse cases can converge and stabilize more quickly after approximately half of the episodes compared to their risk-neutral counterparts.
- Score: 17.526736505065227
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement Learning (RL) has shown exceptional performance across various applications, enabling autonomous agents to learn optimal policies through interaction with their environments. However, traditional RL frameworks often face challenges in terms of iteration complexity and robustness. Risk-sensitive RL, which balances expected return and risk, has been explored for its potential to yield probabilistically robust policies, yet its iteration complexity analysis remains underexplored. In this study, we conduct a thorough iteration complexity analysis for the risk-sensitive policy gradient method, focusing on the REINFORCE algorithm and employing the exponential utility function. We obtain an iteration complexity of $\mathcal{O}(\epsilon^{-2})$ to reach an $\epsilon$-approximate first-order stationary point (FOSP). We investigate whether risk-sensitive algorithms can achieve better iteration complexity compared to their risk-neutral counterparts. Our theoretical analysis demonstrates that risk-sensitive REINFORCE can have a reduced number of iterations required for convergence. This leads to improved iteration complexity, as employing the exponential utility does not entail additional computation per iteration. We characterize the conditions under which risk-sensitive algorithms can achieve better iteration complexity. Our simulation results also validate that risk-averse cases can converge and stabilize more quickly after approximately half of the episodes compared to their risk-neutral counterparts.
Related papers
- SOREL: A Stochastic Algorithm for Spectral Risks Minimization [1.6574413179773761]
spectral risk has wide applications in machine learning, especially in real-world decision-making.
By assigning different weights to the losses of different sample points, it allows the model's performance to lie between the average performance and the worst-case performance.
We propose SOREL, the first gradient-based algorithm with convergence guarantees for the spectral risk minimization.
arXiv Detail & Related papers (2024-07-19T18:20:53Z) - Risk-Sensitive Soft Actor-Critic for Robust Deep Reinforcement Learning
under Distribution Shifts [11.765000124617186]
We study the robustness of deep reinforcement learning algorithms against distribution shifts within contextual multi-stage optimization problems.
We show that our algorithm is superior to risk-neutral Soft Actor-Critic as well as to two benchmark approaches for robust deep reinforcement learning.
arXiv Detail & Related papers (2024-02-15T14:55:38Z) - Near-optimal Policy Identification in Active Reinforcement Learning [84.27592560211909]
AE-LSVI is a novel variant of the kernelized least-squares value RL (LSVI) algorithm that combines optimism with pessimism for active exploration.
We show that AE-LSVI outperforms other algorithms in a variety of environments when robustness to the initial state is required.
arXiv Detail & Related papers (2022-12-19T14:46:57Z) - Optimal Algorithms for Stochastic Complementary Composite Minimization [55.26935605535377]
Inspired by regularization techniques in statistics and machine learning, we study complementary composite minimization.
We provide novel excess risk bounds, both in expectation and with high probability.
Our algorithms are nearly optimal, which we prove via novel lower complexity bounds for this class of problems.
arXiv Detail & Related papers (2022-11-03T12:40:24Z) - Conditionally Elicitable Dynamic Risk Measures for Deep Reinforcement
Learning [0.0]
We develop an efficient approach to estimate a class of dynamic spectral risk measures with deep neural networks.
We also develop a risk-sensitive actor-critic algorithm that uses full episodes and does not require any additional nested transitions.
arXiv Detail & Related papers (2022-06-29T14:11:15Z) - Efficient Risk-Averse Reinforcement Learning [79.61412643761034]
In risk-averse reinforcement learning (RL), the goal is to optimize some risk measure of the returns.
We prove that under certain conditions this inevitably leads to a local-optimum barrier, and propose a soft risk mechanism to bypass it.
We demonstrate improved risk aversion in maze navigation, autonomous driving, and resource allocation benchmarks.
arXiv Detail & Related papers (2022-05-10T19:40:52Z) - A Unifying Theory of Thompson Sampling for Continuous Risk-Averse
Bandits [91.3755431537592]
This paper unifies the analysis of risk-averse Thompson sampling algorithms for the multi-armed bandit problem.
Using the contraction principle in the theory of large deviations, we prove novel concentration bounds for continuous risk functionals.
We show that a wide class of risk functionals as well as "nice" functions of them satisfy the continuity condition.
arXiv Detail & Related papers (2021-08-25T17:09:01Z) - Risk Bounds and Rademacher Complexity in Batch Reinforcement Learning [36.015585972493575]
This paper considers batch Reinforcement Learning (RL) with general value function approximation.
The excess risk of Empirical Risk Minimizer (ERM) is bounded by the Rademacher complexity of the function class.
Fast statistical rates can be achieved by using tools of local Rademacher complexity.
arXiv Detail & Related papers (2021-03-25T14:45:29Z) - Cautiously Optimistic Policy Optimization and Exploration with Linear
Function Approximation [48.744735294559824]
Policy optimization methods are popular reinforcement learning algorithms, because their incremental and on-policy nature makes them more stable than the value-based counterparts.
In this paper, we propose a new algorithm, COPOE, that overcomes the sample complexity issue of PCPG while retaining its robustness to model misspecification.
The result is an improvement in sample complexity from $widetildeO (1/epsilon11)$ for PCPG to $widetildeO (1/epsilon3)$ for PCPG, nearly bridging the gap with value-based techniques.
arXiv Detail & Related papers (2021-03-24T01:42:59Z) - A Full Characterization of Excess Risk via Empirical Risk Landscape [8.797852602680445]
In this paper, we provide a unified analysis of the risk of the model trained by a proper algorithm with both smooth convex and non- loss functions.
arXiv Detail & Related papers (2020-12-04T08:24:50Z) - Beyond Worst-Case Analysis in Stochastic Approximation: Moment
Estimation Improves Instance Complexity [58.70807593332932]
We study oracle complexity of gradient based methods for approximation problems.
We focus on instance-dependent complexity instead of worst case complexity.
Our proposed algorithm and its analysis provide a theoretical justification for the success of moment estimation.
arXiv Detail & Related papers (2020-06-08T09:25:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.