論文の概要: Silico-centric Theory of Mind
- arxiv url: http://arxiv.org/abs/2403.09289v1
- Date: Thu, 14 Mar 2024 11:22:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-15 20:57:06.594030
- Title: Silico-centric Theory of Mind
- Title(参考訳): サイコ中心の心の理論
- Authors: Anirban Mukherjee, Hannah Hanwen Chang,
- Abstract要約: 心の理論(りょうりょう、英: Theory of Mind、ToM)とは、信念、欲望、意図、知識などの精神状態が自分自身や他者へ帰属する能力のこと。
複数の独立したAIエージェントを持つ環境におけるToMについて検討する。
- 参考スコア(独自算出の注目度): 0.2209921757303168
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Theory of Mind (ToM) refers to the ability to attribute mental states, such as beliefs, desires, intentions, and knowledge, to oneself and others, and to understand that these mental states can differ from one's own and from reality. We investigate ToM in environments with multiple, distinct, independent AI agents, each possessing unique internal states, information, and objectives. Inspired by human false-belief experiments, we present an AI ('focal AI') with a scenario where its clone undergoes a human-centric ToM assessment. We prompt the focal AI to assess whether its clone would benefit from additional instructions. Concurrently, we give its clones the ToM assessment, both with and without the instructions, thereby engaging the focal AI in higher-order counterfactual reasoning akin to human mentalizing--with respect to humans in one test and to other AI in another. We uncover a discrepancy: Contemporary AI demonstrates near-perfect accuracy on human-centric ToM assessments. Since information embedded in one AI is identically embedded in its clone, additional instructions are redundant. Yet, we observe AI crafting elaborate instructions for their clones, erroneously anticipating a need for assistance. An independent referee AI agrees with these unsupported expectations. Neither the focal AI nor the referee demonstrates ToM in our 'silico-centric' test.
- Abstract(参考訳): 心の理論(りょうがく、英: Theory of Mind、ToM)とは、信念、欲望、意図、知識などの心的状態が自分や他と異なることを理解する能力である。
複数の独立した独立したAIエージェントを持つ環境で、それぞれ独自の内部状態、情報、目的を持つ環境でToMを調査する。
人間の偽信実験に触発されて、クローンが人間中心のToMアセスメントを行うシナリオを備えたAI(「焦点AI」)を提示する。
我々は、焦点AIに、そのクローンが追加の指示の恩恵を受けるかどうかを評価するよう促す。
同時に、そのクローンにToMアセスメントを、指示と無指示の両方で与え、それによって、人間のメンタライズに似た高次対実的推論において焦点AIを関与させます。
現代のAIは、人間中心のToMアセスメントにほぼ完璧な精度を示す。
1つのAIに埋め込まれた情報は、そのクローンに同一に埋め込まれているため、追加の命令は冗長である。
しかし、我々はAIがクローンに精巧な指示を下すのを観察し、誤って支援の必要性を予測した。
独立した審判AIは、これらの期待に同意する。
焦点AIも審判も、私たちの「シリカ中心」テストではToMを示さない。
関連論文リスト
- Imagining and building wise machines: The centrality of AI metacognition [78.76893632793497]
AIシステムは知恵を欠いている。
AI研究はタスクレベルの戦略に焦点を当てているが、メタ認知はAIシステムでは未発達である。
メタ認知機能をAIシステムに統合することは、その堅牢性、説明可能性、協力性、安全性を高めるために不可欠である。
論文 参考訳(メタデータ) (2024-11-04T18:10:10Z) - Human Bias in the Face of AI: The Role of Human Judgement in AI Generated Text Evaluation [48.70176791365903]
本研究では、偏見がAIと人為的コンテンツの知覚をどう形成するかを考察する。
ラベル付きおよびラベルなしコンテンツに対するヒトのラッカーの反応について検討した。
論文 参考訳(メタデータ) (2024-09-29T04:31:45Z) - Explainable Human-AI Interaction: A Planning Perspective [32.477369282996385]
AIシステムは、ループ内の人間に説明可能である必要がある。
我々は、AIエージェントがメンタルモデルを使用して人間の期待に沿うか、あるいは説明的コミュニケーションを通じて期待を変更する方法について論じる。
本書の主な焦点は、協調的なシナリオであるが、同じ精神モデルが難読化や偽造にどのように使用できるかを指摘したい。
論文 参考訳(メタデータ) (2024-05-19T22:22:21Z) - Brain-inspired and Self-based Artificial Intelligence [23.068338822392544]
機械が人間レベルの知性を達成できるかを評価するチューリングテストは、AIのルーツのひとつです。
この論文は、現在のAIが支援している「思考機械」という概念に挑戦する。
現在の人工知能は、一見知的な情報処理であり、自分自身を真に理解したり、自覚したりしない。
論文 参考訳(メタデータ) (2024-02-29T01:15:17Z) - Competent but Rigid: Identifying the Gap in Empowering AI to Participate
Equally in Group Decision-Making [25.913473823070863]
人間とAIの協調的な意思決定に関する既存の研究は、主にAIと個々の意思決定者との相互作用に焦点を当てている。
本稿では、2人の参加者と1人のAIが3つの英語エッセイをランク付けする委員会を結成するウィザード・オブ・オズ(Wizard-of-oz)研究について述べる。
論文 参考訳(メタデータ) (2023-02-17T11:07:17Z) - Best-Response Bayesian Reinforcement Learning with Bayes-adaptive POMDPs
for Centaurs [22.52332536886295]
本稿では,人間とAIの相互作用を逐次ゲームとして新たに定式化する。
このケースでは、有界人間によるより良い意思決定を支援するというAIの問題は、ベイズ対応のPOMDPに還元される。
我々は、機械が自身の限界と人間の助けを借りて改善する方法について議論する。
論文 参考訳(メタデータ) (2022-04-03T21:00:51Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2)は、AIレコメンデーションにユーザの信頼度を明確に定量化し視覚化する。
これにより、AIシステムの予測を調べてテストすることで、システムの意思決定に対する信頼の基盤を確立することができる。
論文 参考訳(メタデータ) (2022-01-26T18:53:09Z) - On some Foundational Aspects of Human-Centered Artificial Intelligence [52.03866242565846]
人間中心人工知能(Human Centered Artificial Intelligence)の意味については明確な定義はない。
本稿では,AIコンポーネントを備えた物理・ソフトウェア計算エージェントを指すHCAIエージェントについて紹介する。
HCAIエージェントの概念は、そのコンポーネントや機能とともに、人間中心のAIに関する技術的および非技術的議論を橋渡しする手段であると考えています。
論文 参考訳(メタデータ) (2021-12-29T09:58:59Z) - The Who in XAI: How AI Background Shapes Perceptions of AI Explanations [61.49776160925216]
私たちは、2つの異なるグループ、つまりAIのバックグラウンドを持つ人々といない人たちの、異なるタイプのAI説明に対する理解について、混合手法による研究を行います。
その結果,(1) 両群は異なる理由から不合理な数に対する信頼を示し,(2) それぞれの群は意図した設計以上の異なる説明に価値を見出した。
論文 参考訳(メタデータ) (2021-07-28T17:32:04Z) - Trustworthy AI: A Computational Perspective [54.80482955088197]
我々は,信頼に値するAIを実現する上で最も重要な6つの要素,(i)安全とロバスト性,(ii)非差別と公正,(iii)説明可能性,(iv)プライバシー,(v)説明可能性と監査性,(vi)環境ウェルビーイングに焦点をあてる。
各次元について、分類学に基づく最近の関連技術について概観し、実世界のシステムにおけるそれらの応用を概説する。
論文 参考訳(メタデータ) (2021-07-12T14:21:46Z) - To Trust or to Think: Cognitive Forcing Functions Can Reduce
Overreliance on AI in AI-assisted Decision-making [4.877174544937129]
AIによる意思決定支援ツールによってサポートされる人々は、しばしばAIに過度に依存します。
AIの決定に説明を加えることは、過度な信頼を減らすものではありません。
我々の研究は、人間の認知モチベーションが説明可能なAIソリューションの有効性を損なうことを示唆している。
論文 参考訳(メタデータ) (2021-02-19T00:38:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。