論文の概要: Unmasking the Shadows of AI: Investigating Deceptive Capabilities in Large Language Models
- arxiv url: http://arxiv.org/abs/2403.09676v1
- Date: Wed, 7 Feb 2024 00:21:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-25 08:06:28.774096
- Title: Unmasking the Shadows of AI: Investigating Deceptive Capabilities in Large Language Models
- Title(参考訳): AIの影を解き明かす - 大規模言語モデルにおける認知能力の調査
- Authors: Linge Guo,
- Abstract要約: この研究は、大規模言語モデル(LLM)の騙し行動に集中して、AIの騙しの複雑な風景を批判的にナビゲートする。
私の目標は、この問題を解明し、それを取り巻く談話を調べ、その分類と混乱を掘り下げることです。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: This research critically navigates the intricate landscape of AI deception, concentrating on deceptive behaviours of Large Language Models (LLMs). My objective is to elucidate this issue, examine the discourse surrounding it, and subsequently delve into its categorization and ramifications. The essay initiates with an evaluation of the AI Safety Summit 2023 (ASS) and introduction of LLMs, emphasising multidimensional biases that underlie their deceptive behaviours.The literature review covers four types of deception categorised: Strategic deception, Imitation, Sycophancy, and Unfaithful Reasoning, along with the social implications and risks they entail. Lastly, I take an evaluative stance on various aspects related to navigating the persistent challenges of the deceptive AI. This encompasses considerations of international collaborative governance, the reconfigured engagement of individuals with AI, proposal of practical adjustments, and specific elements of digital education.
- Abstract(参考訳): この研究は、大規模言語モデル(LLM)の騙し行動に集中して、AIの騙しの複雑な風景を批判的にナビゲートする。
私の目標は、この問題を解明し、それを取り巻く談話を調べ、その分類と混乱を掘り下げることです。
このエッセイは、AI Safety Summit 2023 (ASS) の評価と LLM の導入から始まり、詐欺行為の根底にある多次元的偏見を強調している。
最後に、私は、騙されるAIの永続的な課題をナビゲートすることに関連する様々な側面について評価的なスタンスを取ります。
この中には、国際協力ガバナンス、AIによる個人の再構成、実践的な調整の提案、デジタル教育の特定の要素などが含まれる。
関連論文リスト
- OlympicArena: Benchmarking Multi-discipline Cognitive Reasoning for Superintelligent AI [73.75520820608232]
我々は,11,163のバイリンガル問題を含む,テキストのみとインターリーブされたテキストイメージのモダリティを紹介する。
これらの課題には、7つのフィールドと62の国際オリンピック大会にわたる幅広い規律が含まれており、データ漏洩について厳格に調査されている。
我々の評価によると、GPT-4oのような先進モデルでさえ、複雑な推論とマルチモーダル統合における現在のAI制限を反映して、全体的な精度は39.97%しか達成していない。
論文 参考訳(メタデータ) (2024-06-18T16:20:53Z) - Towards Bidirectional Human-AI Alignment: A Systematic Review for Clarifications, Framework, and Future Directions [101.67121669727354]
近年のAIの進歩は、AIシステムを意図された目標、倫理的原則、個人とグループの価値に向けて導くことの重要性を強調している。
人間のAIアライメントの明確な定義とスコープの欠如は、このアライメントを達成するための研究領域間の共同作業を妨げる、大きな障害となる。
我々は、2019年から2024年1月までに400以上の論文を体系的にレビューし、HCI(Human-Computer Interaction)、自然言語処理(NLP)、機械学習(ML)といった複数の分野にまたがって紹介する。
論文 参考訳(メタデータ) (2024-06-13T16:03:25Z) - Towards Human-AI Deliberation: Design and Evaluation of LLM-Empowered Deliberative AI for AI-Assisted Decision-Making [47.33241893184721]
AIによる意思決定において、人間はしばしばAIの提案を受動的にレビューし、それを受け入れるか拒否するかを決定する。
意思決定における人間-AIの意見の対立に関する議論と人間のリフレクションを促進する新しい枠組みであるHuman-AI Deliberationを提案する。
人間の熟考の理論に基づいて、この枠組みは人間とAIを次元レベルの意見の引用、熟考的議論、意思決定の更新に携わる。
論文 参考訳(メタデータ) (2024-03-25T14:34:06Z) - Responsible AI Considerations in Text Summarization Research: A Review
of Current Practices [89.85174013619883]
私たちは、責任あるAIコミュニティがほとんど見落としている共通のNLPタスクである、テキスト要約に重点を置いています。
我々は,2020-2022年に出版されたACLアンソロジーから333の要約論文の多段階的質的分析を行った。
私たちは、どの、どの、どの責任あるAI問題がカバーされているか、どの関係するステークホルダーが考慮されているか、そして、述べられた研究目標と実現された研究目標のミスマッチに焦点を合わせます。
論文 参考訳(メタデータ) (2023-11-18T15:35:36Z) - The Robust Semantic Segmentation UNCV2023 Challenge Results [99.97867942388486]
本稿では,ICCV 2023で実施されたMUAD不確実性定量化問題に対処するために用いられる勝利解について概説する。
この課題は、都市環境におけるセマンティックセグメンテーションを中心に、特に自然の敵対的なシナリオに焦点を当てた。
本報告では, 最先端の不確実性定量化手法からインスピレーションを得た19件の論文を提示する。
論文 参考訳(メタデータ) (2023-09-27T08:20:03Z) - Ethical Framework for Harnessing the Power of AI in Healthcare and
Beyond [0.0]
この総合的な研究論文は、AI技術の急速な進化と密接に関連する倫理的次元を厳格に調査する。
この記事の中心は、透明性、エクイティ、回答可能性、人間中心の指向といった価値を、慎重に強調するために作られた、良心的なAIフレームワークの提案である。
この記事は、グローバルに標準化されたAI倫理の原則とフレームワークに対するプレッシャーの必要性を明確に強調している。
論文 参考訳(メタデータ) (2023-08-31T18:12:12Z) - Is AI Changing the Rules of Academic Misconduct? An In-depth Look at
Students' Perceptions of 'AI-giarism' [0.0]
本研究は,AIと盗作を包含する学問的不正行為の創発的形態である,AI-giarismに対する学生の認識を探求する。
この発見は、AIコンテンツ生成に対する明確な不承認を伴う、複雑な理解の風景を描いている。
この研究は、学術、政策立案、そして教育におけるAI技術のより広範な統合に関する重要な洞察を提供する。
論文 参考訳(メタデータ) (2023-06-06T02:22:08Z) - Fairness in Agreement With European Values: An Interdisciplinary
Perspective on AI Regulation [61.77881142275982]
この学際的立場の論文は、AIにおける公平性と差別に関する様々な懸念を考察し、AI規制がそれらにどう対処するかについて議論する。
私たちはまず、法律、(AI)産業、社会技術、そして(道徳)哲学のレンズを通して、AIと公正性に注目し、様々な視点を提示します。
我々は、AI公正性の懸念の観点から、AI法の取り組みを成功に導くために、AIレギュレーションが果たす役割を特定し、提案する。
論文 参考訳(メタデータ) (2022-06-08T12:32:08Z) - Artificial Intelligence Narratives: An Objective Perspective on Current
Developments [0.0]
この研究は、人工知能(AI)の全体像をより深く理解することに関心のある研究者に出発点を提供します。
読者にとって欠かせないことは、AIは様々な方法、思考の流派、そしてそれぞれの歴史的運動を含む包括的用語として理解されなければならないことである。
論文 参考訳(メタデータ) (2021-03-18T17:33:00Z) - Transdisciplinary AI Observatory -- Retrospective Analyses and
Future-Oriented Contradistinctions [22.968817032490996]
本稿では、本質的に学際的なAI観測アプローチの必要性を動機づける。
これらのAI観測ツールに基づいて、我々はAIの安全性に関する短期的な学際的ガイドラインを提示する。
論文 参考訳(メタデータ) (2020-11-26T16:01:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。