Linear optimal transport subspaces for point set classification
- URL: http://arxiv.org/abs/2403.10015v1
- Date: Fri, 15 Mar 2024 04:39:27 GMT
- Title: Linear optimal transport subspaces for point set classification
- Authors: Mohammad Shifat E Rabbi, Naqib Sad Pathan, Shiying Li, Yan Zhuang, Abu Hasnat Mohammad Rubaiyat, Gustavo K Rohde,
- Abstract summary: We propose a framework for classifying point sets experiencing certain types of spatial deformations.
Our approach employs the Linear Optimal Transport (LOT) transform to obtain a linear embedding of set-structured data.
It achieves competitive accuracies compared to state-of-the-art methods across various point set classification tasks.
- Score: 12.718843888673227
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning from point sets is an essential component in many computer vision and machine learning applications. Native, unordered, and permutation invariant set structure space is challenging to model, particularly for point set classification under spatial deformations. Here we propose a framework for classifying point sets experiencing certain types of spatial deformations, with a particular emphasis on datasets featuring affine deformations. Our approach employs the Linear Optimal Transport (LOT) transform to obtain a linear embedding of set-structured data. Utilizing the mathematical properties of the LOT transform, we demonstrate its capacity to accommodate variations in point sets by constructing a convex data space, effectively simplifying point set classification problems. Our method, which employs a nearest-subspace algorithm in the LOT space, demonstrates label efficiency, non-iterative behavior, and requires no hyper-parameter tuning. It achieves competitive accuracies compared to state-of-the-art methods across various point set classification tasks. Furthermore, our approach exhibits robustness in out-of-distribution scenarios where training and test distributions vary in terms of deformation magnitudes.
Related papers
- Correspondence-Free Non-Rigid Point Set Registration Using Unsupervised Clustering Analysis [28.18800845199871]
We present a novel non-rigid point set registration method inspired by unsupervised clustering analysis.
Our method achieves high accuracy results across various scenarios and surpasses competitors by a significant margin.
arXiv Detail & Related papers (2024-06-27T01:16:44Z) - SIGMA: Scale-Invariant Global Sparse Shape Matching [50.385414715675076]
We propose a novel mixed-integer programming (MIP) formulation for generating precise sparse correspondences for non-rigid shapes.
We show state-of-the-art results for sparse non-rigid matching on several challenging 3D datasets.
arXiv Detail & Related papers (2023-08-16T14:25:30Z) - Supervised learning of sheared distributions using linearized optimal
transport [64.53761005509386]
In this paper we study supervised learning tasks on the space of probability measures.
We approach this problem by embedding the space of probability measures into $L2$ spaces using the optimal transport framework.
Regular machine learning techniques are used to achieve linear separability.
arXiv Detail & Related papers (2022-01-25T19:19:59Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
Semi-supervised domain adaptation (SSDA) is a challenging problem requiring methods to overcome both 1) overfitting towards poorly annotated data and 2) distribution shift across domains.
We introduce an adaptive structure learning method to regularize the cooperation of SSL and DA.
arXiv Detail & Related papers (2021-12-12T06:11:16Z) - Frame Averaging for Equivariant Shape Space Learning [85.42901997467754]
A natural way to incorporate symmetries in shape space learning is to ask that the mapping to the shape space (encoder) and mapping from the shape space (decoder) are equivariant to the relevant symmetries.
We present a framework for incorporating equivariance in encoders and decoders by introducing two contributions.
arXiv Detail & Related papers (2021-12-03T06:41:19Z) - Geometry-Aware Self-Training for Unsupervised Domain Adaptationon Object
Point Clouds [36.49322708074682]
This paper proposes a new method of geometry-aware self-training (GAST) for unsupervised domain adaptation of object point cloud classification.
Specifically, this paper aims to learn a domain-shared representation of semantic categories, via two novel self-supervised geometric learning tasks as feature regularization.
On the other hand, a diverse point distribution across datasets can be normalized with a novel curvature-aware distortion localization.
arXiv Detail & Related papers (2021-08-20T13:29:11Z) - Spatial-spectral Hyperspectral Image Classification via Multiple Random
Anchor Graphs Ensemble Learning [88.60285937702304]
This paper proposes a novel spatial-spectral HSI classification method via multiple random anchor graphs ensemble learning (RAGE)
Firstly, the local binary pattern is adopted to extract the more descriptive features on each selected band, which preserves local structures and subtle changes of a region.
Secondly, the adaptive neighbors assignment is introduced in the construction of anchor graph, to reduce the computational complexity.
arXiv Detail & Related papers (2021-03-25T09:31:41Z) - Articulated Shape Matching Using Laplacian Eigenfunctions and
Unsupervised Point Registration [38.16866987817019]
Spectral graph theory can be used to map these graphs onto lower dimensional spaces and match shapes by aligning their embeddings.
We derive a new formulation that finds the best alignment between two congruent $K$-dimensional sets of points by selecting the best subset of eigenfunctions of the Laplacian matrix.
arXiv Detail & Related papers (2020-12-14T08:49:25Z) - Dataset Dynamics via Gradient Flows in Probability Space [15.153110906331733]
We propose a novel framework for dataset transformation, which we cast as optimization over data-generating joint probability distributions.
We show that this framework can be used to impose constraints on classification datasets, adapt them for transfer learning, or to re-purpose fixed or black-box models to classify -- with high accuracy -- previously unseen datasets.
arXiv Detail & Related papers (2020-10-24T03:29:22Z) - Invariant Integration in Deep Convolutional Feature Space [77.99182201815763]
We show how to incorporate prior knowledge to a deep neural network architecture in a principled manner.
We report state-of-the-art performance on the Rotated-MNIST dataset.
arXiv Detail & Related papers (2020-04-20T09:45:43Z) - BasisVAE: Translation-invariant feature-level clustering with
Variational Autoencoders [9.51828574518325]
Variational Autoencoders (VAEs) provide a flexible and scalable framework for non-linear dimensionality reduction.
We show how a collapsed variational inference scheme leads to scalable and efficient inference for BasisVAE.
arXiv Detail & Related papers (2020-03-06T23:10:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.